JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 5, 1997 89

PSMVL : A Concurrency Control Protocol for
Real-Time Secure Database Systems

Chan-jung Park and Seog Park

Abstract

The applications for real-time database systems must satisfy timing constraints. Typically the timing constraints are expressed in the

form of deadlines which are represented by priorities to be used by schedulers. In many real-time applications, since the system maintains

sensitive information to be shared by multiple users with different levels of security clearance, security is another important requirement.

As more advanced database systems are being used in applications that need to support timeliness while managing sensitive information,

protocols that satisfy both requirements need to be developed. In this paper, we propose a new priority-driven secure multiversion

locking(PSMVL) protocol for real-time secure database systems. The schedules produced by PSMVL are proven to be one-copy

serializable. We have also shown that the protocol eliminates covert channels and priority inversions. The details of the protocol, including
the compatibility matrix and the version selection algorithm are presented. The results of the performance comparisons of our protocol with

other protocols are described.

I. Introduction

A multilevel secure database management system (MLS/DBMS)
is a transaction processing system that each user who accesses
the system has a clearance level and each data item maintained
by the system has a unique classification level[9, 10]. In order
to control all the accesses to the database, mandatory access control
(MAC) mechanisms are adopted in MLS/DBMS. With MAC
mechanisms, the sensitive data can be protected by permitting
accesses by only the users whose security levels are higher than
or equal to the levels of data. In order for MLS/DBMS to be
correct, it has to meet security requirements in addition to
satisfying logical data consistency. The most important requirements
for multilevel security are the eliminations of both covert channels
between transactions of different levels and the starvations of
high-level transactions[9, 10]. In principle, MLS database systems
should be used for any system that contains sensitive data[14].

Meanwhile, in real-time database management systems
(RTDBMSs), transactions have explicit timing constraints such as
deadlines[8, 13]. The time criticalness(priority) of a transaction
usually derives from both its timeliness requirement and its
importance. RTDBMS must satisfy timing constraints associated
with transactions and maintain data consistency. There are increa-

Manuscript received March 14, 1997; accepted August 16, 1997.

C. J. Park is with Department of Computer Science, Sogang University, Korea.
S. Park is with Department of Computer Science of the College of
Engineering, Sogang University, Korea.

sing needs for supporting applications which have timing
constraints while managing sensitive data in advanced database
systems. To support such applications, we must integrate real-time
transaction processing techniques into MLS/DBMS, namely
MLS/RT DBMS[15]. Since MLS/RT DBMS needs to support
both MLS and RT requirements, it is easy to see that protocols
for MLS/RT DBMS could be more complicated than those for
MLS/DBMS or RTDBMS.

There are several on-going research projects on concurrency
control protocols for RTDBMS and MLS/DBMS. However, the
protocols for MLS/RT DBMS are rarely presented. Recently,
SRT-2PL(Secure Real-Time Two Phase Locking) protocol[12] for
MLS/RT DBMSs was proposed. In the protocol, a data manager
maintains a primary copy and a secondary copy for each data
item to satisfy two requirements. In addition, the data manager
also maintains a single queue which contains the updates that
have been performed on the primary copy but yet to be per-
formed on the secondary copy for ensuring serializability. The
primary copy of a data item is used for the read and write
operations of the same level transactions, while the secondary
copy of the data item is used for the read operations of high level
transactions. However, there still exists the priority inversion
problemD) because of the superposition operation of the queue on
the secondary copy. That means when a high-level high priority

1) A priority inversion occurs when a high-priority transaction is delayed by a
low-priority transaction. It is not desirable in real-time database systems.

90 PARK and PARK : PSMVL : A CONCURRENCY CONTROL PROTOCOL FOR REAL-TIME SECURE DATABASE SYSTEMS

transaction 7 requests a read operation on a low level data item
x, if other transaction reads the secondary copy of x, then T is
blocked.

In this paper, we propose a priority-driven secure multiversion
locking protocol, called PSMVL, for MLS/RT DBMSs. The
proposed protocol ensures that high-priority transactions are not
~ blocked due to low-priority transactions for timing constraints,

while low-level transactions are not interfered by high—level‘

transactions to avoid covert channels.

The protocols based on multiversions require more amount of .

storage than those based on a single version. However, the pro-
posed protocol is based on multiversion scheme for some reasons.

First, disk prices have come down dramatically, the disk space -
needed to store multiple versions is cheaper. Second, the. concur- -

rency control protocol which maintains a single version of each

data item, such as 2PL-HP[2] and OPT-wait[7] or OPT-sacrifice -

[7], cannot avoid the starvations of high level . transactions,
because low level transactions should neither be delayed nor be
aborted to prevent covert channels. And the protocol cannot
eliminate the starvations of lowrpriority transactions, since low

. priority transactions ‘can be delayed or aborted by high priority .

transactions. Third, the protocols which maintain two versions of
each of data items can partly resolve the above starvation
problems However, due to_the limited number of versions, when
"a high’ priority transaction at a high level conflicts with: a -low
priority transaction at a low level on the same data item, the
protocols sacrifice one of the requirefnen;s. Therefore, multiver-
_ sion scheme is con:sidered. appropriate to satisfy all the require-

nlents for MLS/RT DBMSs. In addition, since our protocol‘

increases the degree of concurrency due to multiversions. We
have shown that the histories?) produced by the protocol are
. one-copy senahzable[6] ’

. The rest of the paper is orgamzed as follows ‘In Section 2~_

we present the security model of this. paper and then 1ntroduce
the features "of transactions in RTDBMS In Section 3, we
Aclas'sify' the transactions according to their characteristics to discuss
the -conﬂicting natures of the requirements, and present the
PSMVL protocol and the version selection algonthm In Section
4, we prove the correctness of the protocol and show that it
ensures serializability, security requirements, and no, priority
inversion. After i_he performance results of the protocol are
presen_ted in Section 5, we conclude the paper in Section 6.

. Background
Let us the security level of a transaction T is ‘denoted by L(D)

and the security level of a data item x is denoted by L(x). When
transactions access ‘data items, the following security policies are

2) A history indicates the order in which the operations of transactions are
executed relative to others.

rules.

adopted as ours[4].

(1) Simple security property for read operations: A transaction
T is ‘allowed to read a data item x if and only if L(7) = L(x).

(2) Restricted star property(Sr-property) for write operations:
A transaction T is allowed to write into a data item x if and
only if L(T) = L(x).

The above two restrictions are intended that sensitive data are
protected by permitting only the users whose security levels are
higher than or equal to the levels of data. In other words,
read/write operations at the same level and read operations at the
lower level(read-down) are allowed. T)

A key feature of RTDBMS is that each transaction has timing
constraints[1]. The concept of value function is adopted as the
way of representing the timing constraints- of real-time transac-
tions. For each transaction, ‘the output of the corresponding value
function expresses the amount of profit that can be obtained by
the completion of the transaction before ‘its deadline. Since it is
more advantageous to the system for transactions with the lafgest
values to be completed before their deadlines, high-priority’is given
to the transactions that have a large outputvalue. At run time,
high-priority transactions should precede lov\;—pﬁoﬁty‘ transactions.

In this paper, we_ adopt the priority assignment policy proposed
in [16]. In that policy, each transaction has an initial priority and
a start-timestanip. The -initial priority of a transaction indicates the
criticality of the transaction. The practlcal priority consists of the -
initial pnonty and the start-timestamp.._

]I][lI The]P’SMV]L protoco]l

In thls section, we examine the conflicts between real-time and
security requlremems and then present the protocols and relatéd

- Let T; and T; be transactions in a conflicting mode and let
P(Ti) and L(T;) be the priority of T; and the security-level of Tj,
respectively. Then, there are three possible cases for the
priorities” of these transactions: (1) P(T)=P(Tj), (2) P(T)>P(Ty),
(3) P(Ti)<P(Tj). Since (2) and (3) are s_ymmetric, without loss of

_ generality we can consideér just one, say (2). Therefore, we can

assume that ‘P(T;) is higher or equal to .P(Tj). In addition, there

are three cases for the security levels of these transactions: (1)

- L(T)=L(T), (2) L(T)>L(T), (3) L(T)<L(T)).

Let Puign; Prow, and Pg, be the priorities and Pign>Piow. Let
Luign, Liow, and Lgg be the. security levels and Luigh>Liow. In
Table -1, Lgg is used in the case that two transactions have the
same security level. Table 1 shows all possible. combinations of

- priority and security level pairs between T; and Tj. - -

In the first case, the priorities and the security levels of the -
two transactions are the same. Therefore, the only concem is
ensuring serializability. Security requirements and timing constraints. -

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 5, 1997 91

Table 1. The priorities and the security levels between T; and T;.

Trans. Ti T;
Cases Priority | Security level | Priority Security level
1 Pg, Lg, Pgy Lgg
2 P, Ly P, Lign
3 Pg, Luign Pey Liow
4 Puign Lg, Pro Lg,
5 Priign Liow Ppow Liign
6 Prign Luign Prow Lioy

can be ignored in this case. In the second and the third cases,
the priorities of the two transactions are the same. Hence, timing
requirements can be ignored and the low level transaction should
not be delayed by the high level transaction. In the fourth case,
the security levels of the two transactions are the same. The
transactions must be scheduled so that they meet the timing
constraints as well as the logical consistency. In this case, any
protocol based on the multiversion scheme for RTDBMS can be
used. In the fifth case, since P(Ti)>P(Tj), Ti must be followed
- by T; in order to prevent priority inversion. In addition, T; can
neither be delayed nor aborted by T; to avoid covert channels.
Both requirements can be satisfied by having T; precede T;.
The problem occurs in the sixth case where P(T))>P(T)) and
L(T)>L(T;). Since P(T:)>P(T;), Ti should not be blocked by T;.
On the other hand, T; cannot be blocked by T; in order to avoid
covert channels. We call this kind of conflict HH/LL-conflict. It
is a conflict between a high security level transaction with high-
priority and a low security level transaction with low-priority.
Ideally, T; should precede T, because of their priorities. We
resolve the HH/LL-conflicts by using the proposed PSMVL protocol.

1. Compatibility Matrix

Like the multiversion two phase locking(MV2PL) protocol[5],
PSMVL has three types of locks: read, write, and certify locks.
The locks are governed by the compatibility matrix in Figure 1.
Since no conflict occurs between read/write or write/write opera-
tions, the certify locks are needed in order to get the correct
synchronization among transactions. The scheduler adopting PSMVL
protocol acquires read and write locks before processing read
and write operations, respectively. When a transaction is about to
commit, the scheduler converts all of the transaction’s write
locks into certify locks.

We only consider the cases where lock requesters and lock
holders have different security levels. As already mentioned,
Puign and Pro. are priorities such that Puigh>Piow while Ly, and
Liow are security levels such that Lygn>Liow. Let Tu(Pu, Lu) be
a lock holder with priority Py and security level Ly. Similarly,
let Tr(Pr, Lr) be a lock requester with priority Pr and security
level Lg. The conflicts between all operations of lower level
transactions and write or certify operations of higher level transac-

o W | w ¢ |ln W r | w | ¢
R Y - - R Y - -
v | Y - - w | Y - -
C Y4 - — C Y - -

(@) Tu(Prow, Luign) and () Tu(Phigh, Luign) and

Tr(PHigh, Liow) Tr(Prow, Liow)

Tu(Peq, Luign) and

Tr(Peg, Liow)

TH - TH

w R w C
Tr R ¢ Tr

R Y Y Y R Y Y N
w - - - w - — -
C - - - c - - —

() Tu(Prow, Liow) and
Tr{Prigh, Luign)

(d) Tu(PHigh, Liow) and
Tr(Prow, Ligh)
TH(PEq, LLow) and
Tr(Peq, Luigh)

R: Read W: Write C: Certify
Y: Yes(shared lock) N: No(exclusive lock)
Y yes due to security levels or priorities.
Y*: yes but the lock holder is aborted

~—: impossible

Fig. 1. The compatibility matrices for PSMVL.

tions cannot occur because of our security policy. There are four
cases based on both the priorities and the security levels.

In Figure 1 (a), P(Tr) =P(Ty) and L(Tr)<L(Tw). For priority
and security reasons, Tr cannot be blocked. Therefore, Ty should
be aborted. The abortion of Ty helps that Ty can read more
recent data without violating any requirements.

In Figure 1 (b), P(Tr)<P(Tw) and L(Tr)<L(Tw). Under the
BLP model, this situation can occur only when the operation of
Tr is write while the operation of Ty is read-down. In this case,
Ty cannot be blocked in order to avoid priority inversion and Tr
cannot be delayed for security reasons. Ty is inserted into HH-
list(x) where x is the data item Ty writes. HH-list(x) is used for
keeping the orderings of priorities and is defined in the next
section in detail.

In Figure 1 (c), P(Tr)>P(Ty) and L(Tr)>L(Tw). In this case,
Tr cannot be blocked because of its priority and Ty should not
be delayed in order to avoid covert channels. Since Tr and Ty
cannot be blocked, Tr can share a lock and Ty is inserted into
HH-list(x) where x is the data item Ty writes. In Figure 1 (d),
P(Tr)<P(Ty) and L(Tr)>L(Ty). Tr cannot block Ty because of
its priority and security level. Therefore, Tr is blocked until Ty
commits.

2. Data Structures

Concurrency control protocols based on multiversion locking use
2PL for write/write synchronization and version selection for
read/write synchronization[6]. When a transaction is about to

choose a version of a data item, the most recent commit version

92 PARK and PARK : PSMVL : A CONCURRENCY CONTROL PROTOCOL FOR REAL-TIME SECURE DATABASE SYSTEMS

is comnionly used. However, since there exist HH/LL-conflicts
in the environment where RT and MLS requirements should be
considered together, in order to resolve HH/LL-conflicts, the
certify operation of a low level transaction with low priority in
(b) of Figure 1 is permitted, and the read operation of a high
level transaction with high priority is permitted in (c) of Figure
1. Therefore, additional rules for version selection are required.

In an MLS/RT DBMS, each data item has its own security

level and each transaction has a priority and a security level. We

define three data types such as Data_itemT, VersionT, and

Read_downT for the management of versions. Data_iterﬁT is a
data type for each of data items, while VersionT is used for
storing the versions of each data item. And Read_downT is a
data type for the- data items which are read by high level
transactions. n

In an MLS/RT DBMS, each data item has its own security level
and each transaction has a priority and-a security level. Each data
item contains two fields: level and version. The level represents
the security level of a data item and it must be trusted.

The version is the field for a version, and contains a
timestamp, a value, a hhllptr, and a vlink. The vlink is the
pointer to the next version. The hhllptr is a pointer that resolves
HH/LL-éonﬂicts and maintains the number of higher security
level transactions that read down the versior.

Let Tj and T« be two transactions with the HH/LL-conflict
relationship on some data item x. Let P(T)>P(Ty) and L(Tj)>
L(T\)=L(x). In our security policy, this situation can occur when
T; executes’ a read down operation while Ty executes a write
operation. The hhliptr is the field of x; that T; reads, ie., x; is
the old committed version of x available to T;. Since ‘the high

priority transaction T; can read old versions of x, Tj needs not to’

be blocked until the lower level transaction Ty- writes. The
hhllptr must be trusted. The hhllptr consists of three fields: level,
count, and clink. The level and the count represent the security
level of -transactions that read down the version in HH/LL-
conflicting mode and the number of the transactions, ‘respectively.
The clink. is the pointer that points to the next node for lower
level transactions in HH/LL-conflicting mode.

3. Algi)h’thms for Version Management

When a HH/LL conflict occurs, the following procedure, called
HH/LL-procedure, is needed for maintaining the version informa-
tion. HH/LL-procedure is presented in Algorithm 1.)

For each data item x, we maintain a list of transactions, denoted
by HH-list(x), in order to preserve the orderings of priorities. The
HH-list(x) is a list of higher priority and higher security level
transactions that are active when another transaction executes a
write operation. HH-list(x) can be obtained by a lock table?. If

3) A lock table contains the information that which transactions have locks on
some data items.

a transaction Tj writes x at tyy, while another tramsaction T;
with higher priority and higher level than T; is reading x, then
Ti is inserted in HH-list(x). This insertion means that HH/LL-
conflict can occur in the future because P(T;) > P(T). When a
transaction reads a data item, HH-list is used to select the appro-
priate version according to its priority in the version selection
algorithm.)

/* When a transaction T; selects the version x; ofx, the following steps
are required. Discussion of the version selection aléorithm will be
provided in a later section. In the algorithm, ‘u->v’ denotes that v s
a member of u. ¥/

<Type declaration>

x; . Data_itemT

new, node : Read_downT .

FIND : boolean type whose value is either TRUE or FALSE.

- if (xi->hhliptr is null) then
. create a node. new;
new->count = 1;
new->level = L(T);
xi->hhliptr = new;
else s
node = xi->hhliptr;
FIND = FALSE; .
while (node is not null) do
if (node->level is L(T})) then
node->count = node->count + j;
FIND = TRUE;
break the loop;
end if
end while
if (FIND is FALSE) then
create a node new ;
new->count = 1;
new->level = L(T);
append new to xi->hhliptr;
end if
end if

Algorithm 1. HH/LL-procedure. .

Three different operations can be performed on a version:
creation, deletion, and selection. Since there is no write/write
conflict in the PSMVL protocol, a new version can be created -
without delay. Because of HH/LL-conflicts, two or more old
versions must be stored. The version that is older than the latest
committed version can be deleted when there exist no high level .
transactions that read that version. Let Ti(P;, L;) be a transaction
with priority P; and security level Li. When Ti(P;, L) is about to
read a data item x, the version selection algorithm (Algorithm 2)
selects an appropriate version of x for T;.

/* When a transaction T; reads a data item x, this procedure specifies
the steps for selecting the right version of x. In the_algorithm, ‘u->v’

denotes that v is a member of u. %

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 5, 1997 93

<Type declaration>
x : Data_itemT
hhlinode : Read_downT
FIND : boolean type whose value is either TRUE or
FALSE.

if T; has a write lock on x, then
T: must read the version T; writes;
else
let hhllnode(a variable) be the node linked to the
hhllptr of the first version of x;
FIND = FALSE;
Jor (all versions of x) do
if (hhllnode is null) then
let hhllnode be the node linked to the hhliptr
of the next version of x;
else ’
/* hhlinode is not null, ie., some higher level
transactions already read down the version */
for (all nodes linked to the hhlinode) do
find a node such that the level of the
node is less than or equal to L(T});
if (there exists such a node) then
FIND = TRUE;
mark the version as x;;
break the loop;
end if
end do
end if
end do
if (FIND is TRUE) then
return X
else
find the version such that it is the latest committed
version of x before T, reads the read operation;
return the version;
end if
end if

Algorithm 2. Version selection algorithm.

4. The Protocol

Before we present our protocol, we define the following
timestamp assignment rules for our protocol that are used in our
protocol to select appropriate versions.

/* Let x be a data item and T, T’ be transactions. In addition, let R,
W, and C be read, write, and certify operations, respectively. *

case 1: T requests a read operation on x
if (x is locked with W or C) then
if (any lock-holder has a higher or equal priority)
then
if (any lock-holder has a lower or equal security
level) then
block lock-requester ;
end if
else
/* lock holder has a lower priority %
Let T’ be the transaction that has lower priority

than that of T;
if (L(T’) is lower than L(T)) HH/LL-procedure();
else if (L(T’) is the same as L(T)) then
Jor (all T’ which has C on x) do
convert the lock from C to W;
end do
end if
end if
end if
grant a read lock to T;

case 2: T requests a write operation on x
Let T’ be any transaction that already has a lock on
x(lock holder).
if (P(T’) is higher than or equal to P(T)) then
if (LUT’) > L(T)) then HH/LL-procedure();
eise /* P(T") < P(T) °/
if (UT) = L(T’)) then
T’ is blocked by T;
wait;
end if
end if
end if
grant a write lock to T;

case 3: T requests a certify operation on x
Let T’ be any transaction that already has a lock on
x(lock holder);
if (P(T’) > P(I)) then
if (UT’) = L(T)) then
the request is rejected and blocked;
else if (L{T’) > L(T)) then HH/LL-procedure();
end if
else if (P(T’) = P(T)) then
if (LT) = L(T)) then
if (T” holds a read or certify lock) then
the request is rejected;
else if (L(T’) > L(T)) HH/LL-procedure();
end if
else /* P(T’) < P(T) %
if (L(T’) = L(T) then
if (T" holds a certify lock) then
for (all T’ which has C on x) do
convert the lock from C to W;
end do
end if
else if (L(T’) < L(T)) HH/LL-procedure() ;
end if
end if
grant C on x;

Algorithm 3. The protocol.

First, for each data item x, timestamp TS(x) is given to x
when x is created. Second, for a read-only transaction T;, the
starting timestamp, S_TS(T;) is assigned. For an update transac-
tion T, both the starting timestamp, S_TS(T) and the commi-
tting timestamp, C_TS(Tj) are assigned. We assume that the
system guarantees the uniqueness of each timestamp.

The compatibility matrix shown in Figure 1 is the basis for
the PSMVL protocol. When transactions have the same priority

94 PARK and PARK : PSMVL : A CONCURRENCY CONTROL PROTOCOL FOR REAL-TIME SECURE DATABASE SYSTEMS

and the same security level, it behaves similarly to the MV2PL
protocol.)

Let H be a history over a set-of transactions {To, Ty, = , Ta}
produced by PSMVL. Then, H must satisfy the following
properties. In order to list the properties of histories produced by
executions of PSMVL, we need to include the operation f;
denoting the certification of Ti.

P, For every T, there is a unique starting timestamp S_TS
(Ti); that is, S_TS(T)) = S_TS(T)) iff i = j. _

P, For every T, f; follows all of T’s reads and writes and
precedes Ti’s commitment.

P; For every ri[xj} in H, if i = j, then ¢ < r[x]. That is,

every read operation reads a committed version. -

P, Let mow be the time to execute ryx]). Then x; is either
(a) the most recently committed version before tyw OF (b)
the version that an active update transaction T; whose
security level is less than or equal to L(Ty) reads down. In
case (}z), C_TS(T;) < C_TS(T})) or S_TS(Ty) < C_TS(T).
In case (b), C_TS(Ti) < C_TS(Tj)) < S_TS(TW < C_TS(Ty
or C_TS(T}) < S_TS(T\) < C_TS(T). That is, for every
k[xj} and wilx] in H, (a) C_TS(T}) < C_TS(T) or (b)
S_TS(Tw) < C_TS(Ty). T

Ps For every rx;] and wi[xi] (i, j, and k are distinct), either
fi < ndxj] or nfxj] < fi. ’

Ps For every rxj] and wilx]] in H, i = jand i =* k, if r[xj]
< f; and the priority of Ty is greater than that of T;, then
C_TS(TW < TS(wilx]).

P; For every update transaction T, there is a unique commit
timestamp C_TS(T:). That is, C_TS(T;) = C_TS(T)) iff i = j.

5. Examples

In this section, we illustrate the operations of the protocol by
showing two example histories produced by PSMVL protocol.
We show how each transaction reads the right version to meet
various requirements.

Example 1 Assume that P; < P’ < P;, L; > L, > L3, L(x) =
L;, and L(y) = L. The operations of each transaction are
specified as shown in Table 2.

Ti(Py, L) : nf[x] ¢
Ta(P2, L) : nafx] way] 2
Ts(Ps, L) : r3fx] ws[x] c3

1 2 3 4 5 - 6
T:i(Pi, Ly) © I nx3) c
TaP>, L) rafxo] | rejected '
Ts(P3, La) X} | walx] .6

Table 2. The first example.

timestamp value hhllptr vlink timestamp value hhllptr vlink

[el—Foll | %4l

level count clink

T L] 1| nil

nil | nil

(a) The version of x (at time 4)

level count clink

(b) The version of z (at time 9)

timestamp value hhllptr vlink timestamp value hhllptr vlink
[l 0] | 12| w|ni]ni]

evel count clink

:

[~

(¢) The version of a (at time 12)

Fig. 2. A sequence of operations for the second example.

In this example, S_TS(T\) = 5, C_TS(Ty) = 6, S_TS(T>) = 3,
S_TS(T3) = 1, and C_TS(Ts) = 4. Since P(T3) > P(T») and
L(T5) < L(Ty), T: is rejected by Ts at time 4(by the rule in
Figure 1 (a)).

Example 2 Assume that P > P, > P; > P, L, > L, > L; >
L4, L(z) = L3, L(x) = L4, and L(a) = L,. The operations of each
transaction are specified as shown in Table 3.

At time 3, HH-list(x) = {T2, T3}. At time 4, since a HH/LL-
conflict between T, and Ts occurs, as shown in Figure 2 (a), xo
— hhliptr points to a new node which contains L3 and a count
of 1. At time 5, T3 reads xo because T is in HH-list(x). At time
6, HH-list(z) = {T>}. At time 7, T, reads x¢ because xo—hhllptr
is not null and it contains lower level transaction Ls. At time 9,
since HH-list(z) is not null, T, reads z, and the versions of z are
as shown in Figure 2 (b). At time 10, HH-list(a) = {T,} and at
time 11, Ty reads ao because T, is in HH-list(a). '

IV. Correctness proofs

In this section, we prove that the PSMVL protocol guarantees
one-copy serializability and no priority inversion. In addition, we
show that it satisfies multilevel security requirements.

1. Serializability

Theorem 1 A multiversion schedule, H, is one-copy serializable
(ISR) if and only if MVSG(H, () is acycli_cfé]. |

Theorem 2 Every history produced by PSMVL is ISR

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 5, 1997

95

Ti(P1, Ly) : ni[x] nfa] o Ta(P2, L) : rofx] r2fz] we[a] c2
Ta(P3, L3) @ 13(z] ra[x] wi[z] c3 Ta(Ps, La) : wa[x] c4
B! 2 | 3| 4| s | 6| 7 |8 9 w0 | 1| 12|B
TPy, Ly) T1[Xo} 1ifao) €
To(P2, L) 12[%o} nlzo] | walaz])
Ty(Py, Ly) | nfz) 1%} | walzs] c3
Ta(P4, La) walxg] | cs

Table 3. The second example.

Proof: Let {Ty, Ta, -+, Ty} be a set of transactions, and H be
a history produced by PSMVL protocol over {Ti, Ts, -+, Ta}.
We will prove that MVSG(H, ¢) is acyclic by showing that

“every edge Ty — T; in MVSG(H, () is in timestamp order. We
define a version order ¢ by x; ¢ x; only if C_TS(T;)<C_TS(T)).
Suppose T; — T; is an edge of SG(H)%). This edge corresponds
to a reads-from relationship(i.e., for some x, T; reads x from Tj).
Then, by PSMVL;, C_TS(T;))<S_TS(Tj)<C_TS(T)). Let r[x;] and
wifx] be in H where i, j, k are distinct, and consider the version
order edge that they generate. There are two cases: (1) xi € xj,
which implies Ti — T; is in MVSG(H, (); and (2) x; € xi, which
implies Tx — T; is in MVSG(H, (). Case (I) by definition of

¢, C_TS(Ti)<C_TS(Tj). Case (2) by P4, either C_TS(Ti)<
C_TS(Tj) or S_TS(Ty<C_TS(T;). The first case is impossible,
because x; ¢ xi implies C_TS(T;))<C_TS(T;). Hence, it must be
true that S_TS(TW)<C_TS(T:). We show that S_TS(Ty)<C_TS(T:)

- ensures Tx — Ti in MVSG(H, ¢). There are two possible cases:
(1) P(T>P(T;) and (2) P(T<P(T).

In case (1), Tk starts before T; commits, and P(Ty)>P(T;), and
Tk reads the older version x; rather than x;. Therefore, it ensures
that Tx — Ti. In case (2), Tk has a lower priority and a higher
security level than T;. Thus, if T; executes wi[x;] before Tk com-
mits, then Ty is aborted following the compatibility matrix in
Figure 1 (a). However, there exists ri[x;} in H. Thus, C_TS(Ty)<
S_TS(T))<C_TS(T;) and it ensures that Ty — Ti. Since all edges
in MVSG(H,<) are in timestamp order, MVSG(H, () is acyclic.
By Theorem 1, H is 1SR.]

2. Timing Constraints

Theorem 3 A higher priority transaction is neither delayed
nor aborted by low-priority transactions due to data contention
on low-level data.

Proof: Let Ti and T; be two transactions such that P(T;)>
P(T)) where P(T;) and P(T;) are the priorities of T; and T;
respectively. Let L(T;) be the security level of Ti. There are
three possible cases.

4) A serialization graph for a history H, SG(H), is a direct graph whose nodes
are transactions and whose edges represent all conflicting relationships between
two transactions,

The first case is where L(T;)>L(T}). When both T and T; are
about to access the same data item x, T; reads down x while T
writes into x because of their levels. Since P(Ti)>P(Tj), by the
version selection algorithm, Ti reads x written by Ty (not Tj)
such that C_TS(T)<S_TS(Ti). Thus, Ti is neither delayed nor
aborted due to T;. The second case is where L(T;)=L(T;). Because
T; and T; have the same level, they should be scheduled only by
a protocol for RTDBMS that avoids priority inversion. Therefore,
T; is not aborted or delayed by Tj. The last case is where L(T;)
<L(Tj). T; has a higher priority than T;. Hence, if T; conflicts
with Tj on the same data item x, T; is aborted by T; using the
compatibility matrix in Figure 1 (a) and (d). For all possible
(Il

cases, high-priority transaction T; precedes T;.

3. Security Properties

i

Theorem 4 No low-level transaction is ever delayed or
aborted by a high-level transaction. In addition, a low-level
transaction is not interfered with due to data contention by a
high-level transaction.

Proof: By the MLS property, a transaction can read and write
data items at its own level and only read down data items at
lower levels. Let T; and T; be two transactions such that L(T;)>
L(T}) where L(Ty) is the security level of T If T; and T; are
conflicting with each other, then we can see that T; reads down
the data item x while T; writes into x. There are two possible cases.

The first case is when P(T))<P(Tj). Because L(T;) is greater
than I(T}) and P(Ti) is less than P(T;), T; is aborted or blocked
according to the compatibility matrix in Figure 1 (a) and (d).
Therefore, T; is neither delayed nor aborted by Ti. The second
case is when P(Ti)>P(T}). By the compatibility matrix in Figure
1 (b) and (c), T; writes x without delaying and HH/LL-procedure
is performed. Thus, T is neither delayed nor aborted by Ti. Since
low-level transactions are neither delayed nor aborted, there is no

O

security violations.
V. Performance Evaluation

In this section, we present the simulation results to show the
performance of PSMVL, compared with three other concurrency

96 PARK and PARK : PSMVL : A CONCURRENCY CONTROL PROTOCOL FOR REAL-TIME SECURE DATABASE SYSTEMS

TH 1 TH
Ta R w C Ta R w C
R Y Y Y R Y N N
w | A Y Y w Y Y Y
C — Y Y - C ‘N N N
(@) Lock holder(Ty) has a lower (b) Lock requester(Tr) has a lower
priority priority. :
Y: yes(allowed)) N: no(not allowed)
- — : impossible . .
A: aborted(a lock holder is aborted)
Y': yes but a certify lock converts to_a write lock.

Fig. 3. The compatibility matrices for UMV2PL.

control protocols. Since the proposed. protocol is based on multi-
version locking, we choose the protocols that are based on locking.

The first protocol is the 2PL-HP protocol[l] for real-time
databases. The 2PL-HP protocol is based on the 2PL with a

priority-based conflict resolution scheme to eliminate priority

inversion. The 2PL-HP maintains a single version.

The second protocol we compared with PSMVL is the
Unconditional Multiversion Two Phase - Locking (UMV2PL)
protocol[11] for real-time databases. The UMV2PL protocol is
based on MV2PL[6] and its compatibility matrix is shown in
Figure 3. In UMV2PL, high priority transactions can abort low
priority transactions in order to avoid priority inversion. However,
when a high prioﬁty transaction requests a: read or a certify
lock, if a low prioriiy transaction holds a certify lock, then the
low priority transaction can convert its certify lock to a write
lock for eliminating conflicts between two transactions. And thus,
the UMV2PL reduces the number of the abortions of low
priority transactions.

The third protocol is SRT-2PL[12] which is also based on
locking and maintains two versions for each data item. As
already mentioned, the SRT-2PL adopts the strict static locking
scheme for the same level read and write operations of transac-
tions while it uses the secondary copy of each of data items for
read-down operations. The SRT-2PL cannot eliminate the priority
inversion problem completely.

By comparing the performance of PSMVL with those protocols,
the cost for satisfying security and timing requirements can be
quantified. / -

" 1. Simulation Model

In order to evaluate the performance of our protocol, we use
SLAM II{3] and adopt the simulation model as shown in Figure
4 (a). The parameters used in the simulation study are presented
in Figure 4 (b).

We compare PSMVL with UMV2PL, 2PL-HP, and SRT-2PL
in terms of the number of restart transactions, the average
~ service time per transaction, and the faimess which shows how

| Transaction Generator l

&
Transac‘:'tion chuler : ‘—-——{>]
; A ;

Block Queue
] >®
Waiting Queue A
V
Concurrency Control >
Scheduler
A

T Operation Queue

Data Manager iﬂ
A

VT

(a) Simulation model

Parameter Value
Database size . 100
Slack time '] 10
Security levels 5
Page hit ratio 05
Number of data accesses per transaction 5-30
Disk access time 25 msec
CPU computation time 10 msec
Restart overhead 10

(b) Parameters

Fig. 4. The simulation model and parameters.

evenly the missed deadlines are spread across the input transac-
tions of the various security levels. When a transaction is
generated, it is delivered to a transaction scheduler which assigns
a deadline and priority to the transaction as follows. Since we
assume a soft deadline for each transaction, when a transaction
misses its deadline, it is not aborted.

F; : DeadLine(T) = ArrivalTime(T) + SlackTime *
TransactionSize(T) * CRUComputationHME .
F> : Priority(T) = 'De,adLine(T) * 100

To compute the faimess, for each security level i, we use the
formula,

Fe Fai ()= -Mz'ssTmns,-/Nonns,-
¥ GURESS\U) = " fiss Trans| NoT rans

In the formula Fs, MissTrans; and NoTrans; are the number of
transactions at level i which miss the deadlines and the number
of transactions at level i, respectively, whereas MissTrans and
NoTrans are the total number of transactions which miss deadlines
and the total number of all input transactions, respectively. If
MissTrans = 0,-then we let Fairness(i) be O.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 5, 1997 97

Security Violation

—x#— SRT-2PL
—tr~ PLHP

‘-o— uMmverL
|—o— PSMVL |

The number of security violatio
-BB88E8888

= i 4
20 40 6 & 100 120 140 160 180 A0
Mean InterArrival Time

(a) Transaction size = 10. Write operation ratio = 0.7.

Priority Inversion

. 140

2

210

£

210

8 —o— PSMVL
8 ~0~ UMVPL | -
° o~ PLHP
2 —— SAT-2PL
g

<

)

=

£

D 4L © L 10 1D 140 10 10 A0
Mean InterArrival Time

(b) Transaction size = 10. Write operation ratio = 0.7.

Fig. 5. Security violations and priority inv-rsions.

2. Experimental Results

The results of our performance analysis are shown in Figures
5, 6, 7, and 8.

In Figure 5 (a), we compare the four protocols PSMVL, UMV2PL,
2PL-HP, and SRT-2PL in terms of the number of times that low
level transactions are delayed or aborted by high level transac-
tions. The x-axis represents the mean interarrival time(MIAT)
which is the average time interval between the generations of
transactions. If MIAT is small, then transactions are created
more frequently. As shown in Figure 5 (a), low level transactions
are never delayed by high level transactions in both PSMVL and
SRT-2PL. On the other hand, UMV2PL, which is based on
multiversion, has fewer blockings than 2PL-HP which is based
on single version. The 2PL-HP has the worst performance
because of its ‘wasted restarts’. For short transactions, the number
decreases rapidly when MIAT is increased gradually, while the
number decreases slowly for long transactions.

In Figure 5 (b), we compare the four protocols in terms of
the number of times that high priority transactions are delayed
or aborted by low priority transactions. The y-axis represents the
number of priority inversions.

As shown in Figure 5 (b), PSMVL, 2PL-HP, and UMV2PL
eliminate the priority inversion problem, while SRT-2PL does
not resolve that problem completely.

Figure 6 shows the percentage of transactions that miss their
deadlines, denoted by Miss Percentage. Miss percentage is

Miss Percentage

100

[:4]
)
gl
g ok [0 PSMVL
S o ~0— WMZPL
$ —o— PLHP
; 0 |~ SRT-2PL
b]

10

0 % T

20 4 60 80 10 120 140 160 180 20
Mean InterArrival Time
(a) Transaction size = 10.
Miss Percentage

g
v —_—
E —o— PSMVL
§ ~0— UMV2PL
2 —t— 2PL-+HP
e —¢-- SRT-2PL
0
2

20 40 60 80 100 120 140 160 180 200
Mean InterArrival Time

(b) Transaction size = 20.

Fig. 6. The miss percentage. write operation ratio = 0.7.

calculated with the following equation:

Miss Percentage = 100 * (the number of tardy jobs / the total number
of jobs)

The number of Ns(No) ‘in the compatibility matrix of UMV2PL
is more than that in the compatibility matrix of PSMVL. This
causes UMV2PL to have more restart transactions than PSMVL.
This is especially true for a high arrival rate, i.e., when MIAT
is small, PSMVL shows better performance than UMV2PL.
Therefore, a high arrival rate increases the number of restart
transactions and results in high miss percentage.

When the transactions are short and the arrival rate of
transactions is low, the miss percentage is rapidly reduced.
However, for long transactions, the miss percentage is reduced
more slowly. This indicates that long transactions are one of the
causes that increase the number of restart transactions. Since
2PL-HP uses a single-version, the number of restart transactions
is higher when the transactions are scheduled using 2PL-HP,
compared to UMV2PL. On the other hand, SRT-2PL adopts the
basic 2PL rules and maintains two versions for each of data
items. Thus, it has the fewer restart transactions than 2PL-HP
but UMV2PL has the better performances than SRT-2PL.

Figure 7 shows the average service time per transaction. Let
T; be a transaction. Then, the average service time is

N
Zl(FinishTime(7 ;) —StartTime(7T;))
N

98 PARK and PARK : PSMVL : A CONCURRENCY CONTROL PROTOCOL FOR REAL-TIME SECURE DATABASE SYSTEMS

Service Time

| ~o—PSMVL
—a—UMV2PL

1 |—a—2PL-HP

4 | —¢—SRT-2PL

20 40 60 8 100 120 140 160 180 200
Mean InterArrival Time

(2) Transaction size = 10.

Service Time

—— 2PLHP
[—%—SRT-2PL

20 40 60 8 100 120 140 160 180 200
Mean InterArrival Time

(b) Transaction size = 15.

Fig. 7. The average response time. write operation ratio = 0.25.

Fairness

—o—level 1
~O—Level 2
—&—Level 3
=¥l evel 4
~X~—|evel 5

‘Fairness

10 15 20 25 30
. Transaction size

Fig. 8. The fairness of the PSMVL. Mean InterArrival Time=40.

where N is the total number of transactions. The x and y axes
represent interarrival times and average service times, respectively.
Since we assume a soft deadline for each transaction,rwhen a
transaction misses its deadline, in is not aborted. Instead, it
continues execution until its commitment. Therefore, transactions
that miss their deadlines can be restarted several times. As shown
in Figure 6, when the number of restart transactions increases, it
takes more time to finish the transactions. PSMVL shows better
performance than UMV2PL and SRT-2PL, even though PSMVL
has additional features such as security requirements. If the time
interval between two transactions is short, the possibility of
conflicts between transactions is increased.

Figure 8 shows the faimess of the PSMVL. In the figure, the
level 5 is the highest, while the level 1 is the lowest. When the
transaction size is 15, only the transactions of level 2 and the

transactions of level 4 miss their deadlines. This represents that
in the PSMVL, the highest level transactions are not always
sacrificed. And when the transaction size becomes smaller, the
number of missed deadline transactions decrease. Therefore, if
the number of deadline‘missing transactions is small,. then the
divisor of the ‘formula F; is very small. As a result, for a
security level i, Fairness(i) becomes big if the numerator of the
formula F; is not zero. Figure 8 also shows that when the
transaction size increases, for each security level i, the value of
Fairness(i)s is getting closer. This means that the number of
deadline-missing transactions is evenly distributed across the
security levels and is not influenced by the security levels.

VI. Conclusion

Database systems for real-time applications must satisfy timing
constraints associated with transactions. Typically a timing
constraint is expressed in the form of a deadline and is repre-
sented by a priority. In this paper, we have classified transaction
processing systems according to their requirements and identified
the conflicting nature of security requirements and real-time
requirements. To address the problem, we have presented a new
priority-driven multiversion locking protocol for scheduling
transactions to meet their timing constraints in real-time secure
database systems. The schedules produced by the protocol were
proven to be one-copy serializable. We also presented our
simulation model and evaluation results of the relative perfor-
mance of the protocol, compared with other protocols.

The work described in this paper can be extended in several
ways. First of all, in this paper we have not considered any
trade-offs between real-time requirements and security require-
ments. A trade-off could have been made between those two
conflicting requirements, depending on the specification of the
application. For example, it would be interesting to see how a
policy to screen out transactions that ar¢ about to miss their
deadline would affect performance. Secondly, we have restricted
ourselves by not distinguishing temporal and non-temporal data
management. By exploiting the semantic information of transac-
tions and the type of data they access, the protocol could be
extended to provide a higher degree of concurrency. Finally, in
this’ paper, we have restricted ourselves to the problem of real-
time secure concurrency control in a database system. There are
other issues that need to be considered in designing a compre-
hensive MLS/RT DBMSs, including architectural issues, recovery,
and data models. We have started to look into those issues.

Acknowledgement

This research has been supported by Institute of Information
Telecommunication and Assessment of Korea.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 5, 1997 . 99

References

[1] Abbott, R. K. and H. Garcia-Molina, “Scheduling Real-Time
Transactions : Performance Evaluation™, Proceedings of the
14th VLDB Conference, September 1988.

[2] Abbott, R. K. and H. Garcia-Molina, “Scheduling Real-Time
Transactions : A Performance Evaluation”, ACM Transac-
tions on Database Systems, September 1992,

[3] Alan, A. and B. Pritsker, Introduction to Simulation and
SLAM II, Systems Publishing Corporation, 3rd Edition, 1986.

[4] Bell, D. E. and L. J. LaPadula, “Secure Computer Systems
: Mathematical Foundations”, ESD-TR-73-278, Mitre Corpora-
tion, 1973.

[5] Bemstein, P. A. and N. Goodman, “Multiversion Concur-

rency Control - Theory and Algorithms”, ACM Transactions

on Database Systems, Vol. §(No. 4), December 1983.

Bernstein, P. A., V. Hadzilacos, and N. Goodman, Concur-

rency Control and Recovery in Database Systems, Addison-

Wesley, 1987.

{7] Haritsa, J. M. Carey, and M. Livny, “Data Access Sched-

uling in Firm Real-Time Database Systems”, Real-Time

Systems Journals, Vol. 4(No. 3), 1996.

Hong, Seongsoo, “Scheduling Real-Time Programs with Static

[6

[

[8

[—

Compiler Transformations”, Journal of Electrical Engineering

and Information Science, Vol. 1(No. 3), September 1996.
[9] Keefe, T. F. and W. T. Tsai, “Multiversion Concurrency

Control for Multilevel Secure Database Systems”, Proceed

ings of the 10th IEEE Symposium on Research in Security

S Chan-jung Park received the B.S. degree
e . in computer science from Sogang Univer-
\j;x sity in 1988 and the M.S. degree in

~ \'m) computer science from Korea Advanced

™ { Institute of Science and Technology

y N
o~ __=.| (KAIST) in 1990. From 1990 to 1994,
she worked at Korea Telecom as a
technical staff. Since 1994, she has been
a PhD. student in computer science department, Sogang

University. Her major research areas are database security,
real-time systems, and transaction processing systems.

and Privacy, May 1990.

[10] Keefe, T. F, W. T. Tsai, and J. Srivastava, “Multiversion
Secure Database Concurrency Control”, Proceedings of the
6th International Conference on Data Engineering, February
1990.

[11] Kim, W. and J. Srivastava, “Enhancing Real-Time DBMS
Performance with Multiversion Data and Priority Base Disk
Scheduling”, Proceedings of the 12th IEEE Real-Time
Systems Symposium, December 1991.

[12] Mukkamala, R. and Sang H. Son, “A Secure Concurrency
Control Protocol for Real-Time Databases”, Proceedings of
the 9th IFIP Working Conference on Database Security,
August 1995.

[13] Shu, L. C. and M. Young, “Correctness Criteria and Concur-
rency Control for Real-Time Systems : A Survey”, Technical
Report SERC-TR-131-P, November 1992.

[14] Son, S. H. and B. Thuraisingham, “Towards a Multilevel
Secure Database Management System for Real-Time Applica-
tions”, Proceedings of I[EEE Workshop on Real-Time
Applications, May 1993,

{15] Son, S. H. and R. David, and B. Thuraisingham, “An
Adaptive Policy for Improved Timeliness in Secure
Database Systems”, Proceedings of the 9th IFIP Working
Conference on Database Security, August 1995.

[16] Son, S. H., S. Park, and Y. Lin, “An Integrated Real-Time
Locking Protocol”, Proceedings of the 8th International
Conference on Data Engineering, February 1992.

Seog Park received the B.S. degree in
computer science from Seoul National
University in 1978, the M.S. and the
Ph.D. degrees in computer science from

R wy g e

Y,

K

Korea Advanced Institute of Science and

/T\)\ Technology (KAIST) in 1980 and 1983,
AV

respectively. Since 1983, he has been

working in the Department of Computer
Science of the College of Engineering, Sogang University. His
major research areas are real-time systems, database security,
data warehouse, digital library, and multimedia database systems.
Dr. Park is a member of ACM, the IEEE Computer Society and
the Korea Information Science Society.

