• Title/Summary/Keyword: Real-Time Scheduling.

Search Result 871, Processing Time 0.026 seconds

A Modified-PLFS Packet Scheduling Algorithm for Supporting Real-time traffic in IEEE 802.22 WRAN Systems (IEEE 802.22 WRAN 시스템에서 실시간 트래픽 지원을 위한 Modified-PLFS 패킷 알고리즘)

  • Lee, Young-Du;Koo, In-Soo;Ko, Gwang-Zeen
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, a packet scheduling algorithm, called the modified PLFS, is proposed for real-time traffic in IEEE 802.22 WRAN systems. The modified PLFS(Packet Loss Fair Scheduling) algorithm utilizes not only the delay of the Head of Line(HOL) packets in buffer of each user but also the amount of expected loss packets in the next-next frame when a service will not be given in the next frame. The performances of the modified PLFS are compared with those of PLFS and M-LWDF in terms of the average packet loss rate and throughput. The simulation results show that the proposed scheduling algorithm performs much better than the PLFS and M-LWDF algorithms.

  • PDF

A Hueristic Algorithm for Nonidentical Parallel Machines Scheduling (동일하지 않는 병렬기계 일정계획을 위한 휴리스틱 방법)

  • 전태웅;박해천
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.37-42
    • /
    • 2000
  • The parallel machines scheduling problems is one of the combinatorial optimization problems that often occurs in the real world. This problem is classified into two cases, one of which is the case which processing time are identical and the other, nonidentical. Not so much researches have been made on the case that nonidentical parallel machines scheduling problem. This study proposes Tabu Search methods for solving parallel machines scheduling problems related to due dates: minimizing mean tardiness, minimizing the number of tardy jobs, minimizing the maximum tardiness.

  • PDF

A Study on Single Machine Scheduling with a Rate-Modifying Activity and Time-Dependent Deterioration After the Activity (복구조정 활동과 복구조정 후 시간경과에 따라 퇴화하는 작업시간을 갖는 단일기계의 일정계획에 관한 연구)

  • Kim, Byung Soo;Joo, Cheol Min
    • Korean Management Science Review
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • We consider the single machine scheduling problem with a rate-modifying activity and time-dependent deterioration after the activity. The class of scheduling problems with rate-modifying activities and the class of scheduling problems with time-dependent processing times have been studied independently. However, the integration of these classes is motivated by human operators of tasks who has fatigue while carrying out the operation of a series of tasks. This situation is also applicable to machines that experience performance degradation over time due to mal-position or mal-alignment of jobs, abrasion of tools, and scraps of operations, etc. In this study, the integration of the two classes of scheduling problems is considered. We present a mathematical model to determine job-sequence and a position of a rate-modifying activity for the integration problem. Since the model is difficult to solve as the size of real problem being very large, we propose genetic algorithms. The performance of the algorithms are compared with optimal solutions with various problems.

Scheduling Method of Real-Time Mobile Transaction Manager considering Value of Transactions and Validity of Real-Time Data (트랜잭션의 중요도와 데이터의 유효성을 고려한 실시간 이동 트랜잭션 관리자의 스케줄링 기법)

  • Jo, Suk-Gyeong;Kim, Gyeong-Bae;Lee, Sun-Jo;Bae, Hae-Yeong
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.533-542
    • /
    • 2001
  • In this paper, we present a scheduling method for real-time mobile transaction manager in mobile computing environment. The proposed method checks whether a transaction is executable or not. It is able to by considering not only the deadline of real-time data in mobile hosts. And then, it schedules the real-time mobile transactions by making optimal execution window based on the priority queue, while considering transaction value and deadline. Disconnection with mobile hosts is monitored in selecting the transaction for execution. Using the proposed method reduces the number of restarting times after transaction aborts which is caused by the violation of the validity constraints of real-time data. And in has merits of maximizing the sum of values of real-time mobile transactions which meet the deadline. The performance evaluation demonstrates that the number of committed real-time transactions within the deadline is improved by 20%. This method can be used in real-time mobile transaction manager is such environments as cellular communications, emergency medicine information system and so on.

  • PDF

An Integer Programming Approach to the Problem of Daily Crew Scheduling (일간승무계획문제의 정수계획해법)

  • 변종익;이경식;박성수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.613-616
    • /
    • 2000
  • This paper considers the problem of subway crew scheduling. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper, we propose two basic techniques that solve the problem in a reasonable time, though the optimality of the solution is not guaranteed. To reduce the number of variables, we adopt column-generation technique. We could develop an algorithm that solves column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational results show column-generation makes the problem of treatable size, and variable fixing enables us to solve LP relaxation in shorter time without a considerable increase in the optimal value. Finally, we were able to obtain an integer optimal solution of a real instance within a reasonable time.

  • PDF

Stochastic Power-efficient DVFS Scheduling of Real-time Tasks on Multicore Processors with Leakage Power Awareness (멀티코어 프로세서의 누수 전력을 고려한 실시간 작업들의 확률적 저전력 DVFS 스케쥴링)

  • Lee, Kwanwoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2014
  • This paper proposes a power-efficient scheduling scheme that stochastically minimizes the power consumption of real-time tasks while meeting their deadlines on multicore processors. In the proposed scheme, uncertain computation amounts of given tasks are translated into probabilistic computation amounts based on their past completion amounts, and the mean power consumption of the translated probabilistic computation amounts is minimized with a finite set of discrete clock frequencies. Also, when system load is low, the proposed scheme activates a part of all available cores with unused cores powered off, considering the leakage power consumption of cores. Evaluation shows that the scheme saves up to 69% power consumption of the previous method.

Real-Time Aperiodic Tasks Scheduling on Multiprocessor Systems (다중프로세서 시스템상의 실시간 비주기 태스크 스케줄링)

  • Moon, Seok-Hwan;Jeon, Jin-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.733-735
    • /
    • 2012
  • Real-Time Aperiodic Tasks Scheduling Using Synthetic Utilization on Multiprocessor Systems has a drawback in that if some tasks, even though they are completed and have no more execution times, are included in the current invocation set, their execution times and deadlines are added to the synthetic utilization. This may lead to a problem in which actually schedulable tasks are decided not to be schedulable. In this paper, we recognize the above mentioned problem and propose an improved synthetic utilization method that can be used to schedule aperiodic tasks more efficiently on multiprocessor systems.

  • PDF

Energy-Efficient Multi- Core Scheduling for Real-Time Video Processing (실시간 비디오 처리에 적합한 에너지 효율적인 멀티코어 스케쥴링)

  • Paek, Hyung-Goo;Yeo, Jeong-Mo;Lee, Wan-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.11-20
    • /
    • 2011
  • In this paper, we propose an optimal scheduling scheme that minimizes the energy consumption of a real-time video task on the multi-core platform supporting dynamic voltage and frequency scaling. Exploiting parallel execution on multiple cores for less energy consumption, the propose scheme allocates an appropriate number of cores to the task execution, turns off the power of unused cores, and assigns the lowest clock frequency meeting the deadline. Our experiments show that the proposed scheme saves a significant amount of energy, up to 67% and 89% of energy consumed by two previous methods that execute the task on a single core and on all cores respectively.

Two-Phase Approach to Optimal Weather Routing Using Real-Time Adaptive A* Algorithm and Geometric Programming (실시간 적응 A* 알고리즘과 기하학 프로그래밍을 이용한 선박 최적항로의 2단계 생성기법 연구)

  • Park, Jinmo;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.263-269
    • /
    • 2015
  • This paper proposes a new approach for solving the weather routing problem by dividing it into two phases with the goal of fuel saving. The problem is to decide two optimal variables: the heading angle and speed of the ship under several constraints. In the first phase, the optimal route is obtained using the Real-Time Adaptive A* algorithm with a fixed ship speed. In other words, only the heading angle is decided. The second phase is the speed scheduling phase. In this phase, the original problem, which is a nonlinear optimization problem, is converted into a geometric programming problem. By solving this geometric programming problem, which is a convex optimization problem, we can obtain an optimal speed scheduling solution very efficiently. A simple case of numerical simulation is conducted in order to validate the proposed method, and the results show that the proposed method can save fuel compared to a constant engine output voyage and constant speed voyage.

Optimal Energy Consumption Scheduling in Smart-Grid Considering Storage Appliance : A Game-Theoretic Approach (스마트 그리드에 있어서 저장 장치를 고려한 최적 에너지 소비 스케줄링 : 게임 이론적 접근)

  • Yeo, Sangmin;Lee, Deok-Joo;Kim, Taegu;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.414-424
    • /
    • 2015
  • In this research, we consider a smart grid network of electricity with multiple consumers connected to a monopolistic provider. Each consumer can be informed the real time price changes through the smart meter and updates his consumption schedule to minimize the energy consumption expenditures by which the required power demand should be satisfied under the given real time pricing scheme. This real-time decision making problem has been recently studied through game-theoretic approach. The present paper contributes to the existing literature by incorporating storage appliance into the set of available household appliances which has somewhat distinctive functions compared to other types of appliances and would be regarded to play a significant role in energy consumption scheduling for the future smart grid. We propose a game-theoretic algorithm which could draw the optimal energy consumption scheduling for each household appliances including storage. Results on simulation data showed that the storage contributed to increase the efficiency of energy consumption pattern in the viewpoint of not only individual consumer but also whole system.