• Title/Summary/Keyword: Real-Time GPS

Search Result 792, Processing Time 0.023 seconds

Verification on the Application of Monitoring for Frame Structures Using the VRS-RTK Method through the Free Vibration Test (자유 진동 실험을 통한 VRS-RTK 기법을 이용한 골조 구조물의 모니터링 적용성 검토)

  • Choi, Se-Woon;Park, Hyo-Seon;Kim, Bub-Ryur;Lee, Hong-Min;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.174-182
    • /
    • 2014
  • To monitor the wind-induced responses of buildings, conventional real-time kinematic (RTK) methods based on two global positioning system (GPS) receivers (e.g., a reference and a rover) are widely applied. However, these methods can encounter problems such as difficulty in securing and maintaining a space for a reference station. With the recently developed virtual reference station (VRS)-RTK approach, the position of a structure can be measured using only a rover receiver. In this study, to evaluate the applicability of VRS-RTK methods in monitoring the lateral structural responses of frame structures, we performed free vibration tests on a one-story frame model (the first natural frequency of 1 Hz) and a three-story frame model (the first natural frequency of 0.85 Hz). To assess the reliability of the displacement and acceleration responses measured by the GPS, we performed a concurrent measurement using laser displacement sensors and an accelerometer. The accelerometer results were consistent with the GPS measurements in terms of the time history and frequency content. Furthermore, to derive an appropriate sampling rate for the continuous monitoring of buildings, the errors in the displacement responses were evaluated at different GPS sampling rates (5, 10, 20 Hz). The results indicate that as the sampling rate increased, the errors in the displacement responses decreased. In addition, in the three-story model, all modal components (first, second, and third modes) could be recorded at a sampling rate of 20 Hz.

Channelwise Multipath Detection for General GPS Receivers (일반적인 GPS 수신기를 위한 채널별 다중경로오차 검출 기법)

  • Lee, Hyung-Keun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.818-826
    • /
    • 2002
  • Since multipath phenomenon frequently occurs when a Global Positioning System receiver is placed in urban area crowded with large buildings, efficient mitigation of multipath effects is necessary to resolve. In this paper, we propose a new multipath detection technique that is useful in real-time positioning with a general Global Positioning System receiver. The proposed technique is based on a channelwise multipath test statistic that efficiently indicates the degree of fluctuations induced by multipath error. The proposed multipath test statistic is operationally advantageous because it does not require any specialized hardware nor any pre-computation of receiver position, it is directly related to standard $\chi$$^2$-distributions, and it can adjust the detection resolution by increasing the number of successive measurements. Simulation and experiment results verify the performance of the proposed multipath detection technique.

REAL-TIME SPATIAL ANALYSIS FOR GPS/GIS-BASED AVL SYSTEM

  • Kim, Kwang-Soo;Kim, Min-Soo;Choi, Hae-Ock;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.194-197
    • /
    • 1999
  • In AVL, GIS analyze the information from the vehicles to provide commercial or other value far user. As spatial analysis functions in GIS make a new valuable information using the vehicle's position and geographic object's location, they perform an important roles to improve the management efficiency of vehicles. Most GIS however are used static data for the spatial analysis, so the research area on AVL used dynamic vehicle location has generated unsuitable result. In this study, we use GPS real time tracking data to perform spatial analysis between moving vehicle and static geographic object. The method proposed in this paper considers the driving direction of vehicle and creates the result which is located in forward of vehicle. In this paper, two spatial analysis functions, near and connectivity, are developed.

  • PDF

Performance Analysis of Local Network PPP-RTK using GPS Measurements in Korea

  • Jeon, TaeHyeong;Park, Sang Hyun;Park, Sul Gee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.263-268
    • /
    • 2022
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) is a high accuracy positioning method that combines RTK and PPP to overcome the limitations on service coverage of RTK and convergence time of PPP. PPP-RTK provides correction data in the form of State Space Representation (SSR), unlike RTK, which provides measurement-based Observation Space Representation (OSR). Due to this, PPP-RTK has an advantage that it can transmit less data than RTK. So, recently, several techniques for PPP-RTK have been proposed. However, in order to utilize PPP-RTK techniques, performance analysis of these in a real environment is essential. In this paper, we implement the local network PPP-RTK and analyze the positioning performance according to the distance within 100 km from the reference station in Korea. As results of experiment, the horizontal and vertical 95% errors of local network PPP-RTK were 6.25 cm and 5.86 cm or less, respectively.

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

A Study on Container Monitoring System Using GPS (GPS를 이용한 컨테이너 모니터링 시스템에 관한 연구)

  • Choi Byoung Gil;Jin Sea il;Hong Sang Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.401-409
    • /
    • 2004
  • A monitoring system for container using CPS is the system for positioning and managing containers in real time. CPS is capable of positioning the container, promptly with a reasonable amount of accuracy. Facility managers of ports or airports should have loading, unloading, and keeping freight effectively. Transport companies or freight owners should allocate moving container properly and be able to prevent the loss or delay of freight. In this study, the position and pathways of container are monitored by real-time tracking method. The absolute and relative locations of container are monitored digitally and visually from TC_loading to TC_unloading yard. It has been tested the movement of the containers equiped with GPS, and its accuracy and efficiency were analyzed.

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Design and Implementation of Receiver Network Elements for Real-Time Precise GPS/GNSS (실시간 정밀 GPS/GNSS를 위한 위성항법 수신기 망 구성 요소 설계 및 구현)

  • Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.126-133
    • /
    • 2010
  • Due to the deployment of various wireless networks originating from CDMA, GSM, and WLAN, it became very convenient to exchange information from one place to another. As compared with the traditional environments for one-way information distribution based on fixed radio frequency bands, the convenient wireless network environments will bring about many changes in positioning technologies based on global navigation satellites. Among the many changes to come, the reconfigurable receiver network is one of the most attractive concepts since it can be tailored to a specific application area among networked robots, formation flying, bridge monitoring, and traffic monitoring. As an initial study to develop a reconfigurable receiver network, this paper deals with the design and implementation of the key elements of the reconfigurable receiver netowork; server, broadcaster, and client. In the designed receiver network, a sever receives and decodes measurements from a reference receiver installed at a known location, a broadcaster processes and transfers the messages from servers to clients and manages connections with servers and clients, a client receives the messages from the broadcaster and performs differential positioning. A real-time experiment result is demonstrated to validate the functionalities of each network element.

Implementation of a Real-time Data fusion Algorithm for Flight Test Computer (비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현)

  • Lee, Yong-Jae;Won, Jong-Hoon;Lee, Ja-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

Autonomous Tracking Control of Intelligent Vehicle using GPS Information (GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어)

  • Chung, Byeung-Mook;Seok, Jin-Woo;Cho, Che-Seung;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.