• Title/Summary/Keyword: Real-Time Adaptive Learning

Search Result 116, Processing Time 0.025 seconds

Adaptive Gaussian Mixture Learning for High Traffic Region (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 배경의 학습 및 객체 검출)

  • Park Dae-Yong;Kim Jae-Min;Cho Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • For the detection of moving objects, background subtraction methods are widely used. An adaptive Gaussian mixture model combined with probabilistic learning is one of the most popular methods for the real-time update of the complex and dynamic background. However, probabilistic learning approach does not work well in high traffic regions. In this paper, we Propose a reliable learning method of complex and dynamic backgrounds in high traffic regions.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

An Adaptive Fast Expansion, Loading Statistics with Dynamic Swapping Algorithm to Support Real Time Services over CATV Networks

  • Lo Chih-Chen, g;Lai Hung-Chang;Chen, Wen-Shyen E.
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.432-441
    • /
    • 2006
  • As the community antenna television (CATV) networks becomes ubiquitous, instead of constructing an entirely new broadband network infrastructure, it has emerged as one of the rapid and economic technologies to interconnecting heterogeneous network to provide broadband access to subscribers. How to support ubiquitous real-time multimedia applications, especially in a heavy traffic environment, becomes a critical issue in modern CATV networks. In this paper, we propose a time guaranteed and efficient upstream minislots allocation algorithm for supporting quality-of-service (QoS) traffic over data over cable service interface specification (DOCSIS) CATV networks to fulfill the needs of realtime interactive services, such as video telephony, video on demand (VOD), distance learning, and so on. The proposed adaptive fast expansion algorithm and the loading statistics with dynamic swapping algorithm have been shown to perform better than that of the multimedia cable network system (MCNS) DOCSIS.

Domain Adaptive Fruit Detection Method based on a Vision-Language Model for Harvest Automation (작물 수확 자동화를 위한 시각 언어 모델 기반의 환경적응형 과수 검출 기술)

  • Changwoo Nam;Jimin Song;Yongsik Jin;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • Recently, mobile manipulators have been utilized in agriculture industry for weed removal and harvest automation. This paper proposes a domain adaptive fruit detection method for harvest automation, by utilizing OWL-ViT model which is an open-vocabulary object detection model. The vision-language model can detect objects based on text prompt, and therefore, it can be extended to detect objects of undefined categories. In the development of deep learning models for real-world problems, constructing a large-scale labeled dataset is a time-consuming task and heavily relies on human effort. To reduce the labor-intensive workload, we utilized a large-scale public dataset as a source domain data and employed a domain adaptation method. Adversarial learning was conducted between a domain discriminator and feature extractor to reduce the gap between the distribution of feature vectors from the source domain and our target domain data. We collected a target domain dataset in a real-like environment and conducted experiments to demonstrate the effectiveness of the proposed method. In experiments, the domain adaptation method improved the AP50 metric from 38.88% to 78.59% for detecting objects within the range of 2m, and we achieved 81.7% of manipulation success rate.

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction (배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.366-369
    • /
    • 2005
  • Background subtraction is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable factor such as gradually changing illumination, swaying trees and suddenly moving objects, which are to be considered for the adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background adaptively considering the various changes in the scenes, and the adaptive GMMs improving the real-time performance were worked. This paper, for on-line background subtraction, applied the improved adaptive GMM, which uses the small constant for learning rate ${\alpha}$ and is not able to speedily adapt the suddenly movement of objects, So, this paper proposed and evaluated the dynamic control method of ${\alpha}$ using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Transfer Learning Technique for Accelerating Learning of Reinforcement Learning-Based Horizontal Pod Autoscaling Policy (강화학습 기반 수평적 파드 오토스케일링 정책의 학습 가속화를 위한 전이학습 기법)

  • Jang, Yonghyeon;Yu, Heonchang;Kim, SungSuk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.4
    • /
    • pp.105-112
    • /
    • 2022
  • Recently, many studies using reinforcement learning-based autoscaling have been performed to make autoscaling policies that are adaptive to changes in the environment and meet specific purposes. However, training the reinforcement learning-based Horizontal Pod Autoscaler(HPA) policy in a real environment requires a lot of money and time. And it is not practical to retrain the reinforcement learning-based HPA policy from scratch every time in a real environment. In this paper, we implement a reinforcement learning-based HPA in Kubernetes, and propose a transfer leanring technique using a queuing model-based simulation to accelerate the training of a reinforcement learning-based HPA policy. Pre-training using simulation enabled training the policy through simulation experience without consuming time and resources in the real environment, and by using the transfer learning technique, the cost was reduced by about 42.6% compared to the case without transfer learning technique.

The Effect of Segment Size on Quality Selection in DQN-based Video Streaming Services (DQN 기반 비디오 스트리밍 서비스에서 세그먼트 크기가 품질 선택에 미치는 영향)

  • Kim, ISeul;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1182-1194
    • /
    • 2018
  • The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

A Time Series Forecasting Using Neural Network by Modified Adaptive learning Rates and Initial Values (적응적 학습방법과 초기값의 개선에 의한 신경망 모형을 이용한 시계열 예측)

  • Yoon, Yeo-Chang;Lee, Sung-Duck
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2609-2614
    • /
    • 1998
  • In this work, we consider the forecasting performance between nearal network and Box-Jenkins method for time series data. A modified learning process is developed for neural network approach at time eries data, ie, properly adaptive learning rates selecting by orthogonal arrays and dynamic selecting of initial values using Easton's cotroller box. We can obtain good starting points with dynamic graphics approach. We use real data sets for this study : the Wolf yearly sunspot numbers between 1700 and 1988.

  • PDF