• Title/Summary/Keyword: Real-Fluid Model

Search Result 227, Processing Time 0.181 seconds

Approximate Nonrandom Two-Fluid Lattice-Hole Theory. General Derivation and Description of Pure Fluids

  • 유기풍;신훈용;이철수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.965-972
    • /
    • 1997
  • An approximate molecular theory of classical fluids based on the nonrandom lattice statistical-mechanical theory is presented. To obtain configurational Helmholtz free energy and equation of state (EOS), the lattice-hole theory of the Guggenheim combinatorics is approximated by introducing the nonrandom two-fluid theory. The approximate nature in the derivation makes the model possible to unify the classical lattice-hole theory and to describe correctly the configurational properties of real fluids including macromolecules. The theory requires only two molecular parameters for a pure fluid. Results obtained to date have demonstrated that the model correlates quantitatively the first- and second-order thermodynamic properties of real fluids. The basic simplicity of the model can readily be generalized to multicomponent systems. The model is especially relevant to (multi) phase equilibria of systems containing molecularly complex species.

Analytic consideration on real-time assembly line control for multi-PCB models

  • Um, Doo-Gan;Park, Jong-Oh;Cho, Sung-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.318-323
    • /
    • 1992
  • The improvement of the production capability of multi PCB assembly line can not be simply done by improving the capacities of each assembly robot cells but must be done by controlling the production line effectively with the line host computer which controls over the whole assembly line. A real time production control, a real time model change and a real time trouble shooting compose the specific concepts of this technique. In this paper, we present and analyze the definition and application method of real time assembly concept. The meaning of real time model change, troubles and error sooting and its algorithm will be introduced. Also, the function of the host computer which is in charge of all of many different tasks mentioned above and the method are presented. The improvement of the productivity is mainly focused on the efficiency of multi-PCB production control. The importance of this aspect is gradually increasing, which we have presented the analysis and the solution.

  • PDF

An Experimental Study of the Dynamic Characteristics of Viscous Fluid Dampers (점성유체 감쇠기의 동특성에 관한 실험적 연구)

  • 권형오
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.243-248
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two types : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate, relative velocity between resistant plate and base plate, oil film thickness of the viscous fluid, but the temperature effect was neglected. The numerical model was established by assuming an non-Newtonian fluid behavior. The test results were summarized by the equation of F= 0.0308(ν/d)0.5125. Using the obtained for a real structure design was introduced.

  • PDF

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

Approximate Nonrandom Two-Fluid Lattice-Hole Theory. Thermodynamic Properties of Real Mixtures

  • 유기풍;신훈용;이철수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.841-850
    • /
    • 1997
  • A simple molecular theory of mixtures is formulated based on the nonrandom two-fluid lattice-hole theory of fluids. The model is applicable to mixtures over a density range from zero to liquid density. Pure fluids can be completely characterized with only two molecular parameters and an additional binary interaction energy is required for a binary mixture. The thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid parameters and the binary interaction energies. The Quantitative prediction of vapor-liquid, and solid-vapor equilibria of various mixtures are demonstrated. The model is useful, in particular, for mixtures whose molecules differ greatly in size. For real mixtures, satisfactory agreements are resulted from experiment. Also, the equation of state (EOS) is characterized well, even the liquid-liquid equilibria behaviors of organic mixtures and polymer solutions with a temperature-dependent binary interaction energy parameter.

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF