• Title/Summary/Keyword: Real time 3D imaging

Search Result 102, Processing Time 0.021 seconds

Embedded 3D-Sensing Devices with Real-Time Depth-Imaging Technologies

  • Bhowmik, Achintya K.
    • Information Display
    • /
    • v.18 no.3
    • /
    • pp.3-12
    • /
    • 2017
  • In the recent years, significant advances have been made in the development of small form-factor, low power, and low cost 3D-sensing devices based on depth-imaging technologies with real-time performance. This has led to the advent of devices and machines that are able to sense and understand the world, navigate in the environment, and interact naturally with their human users. Human-computer interactions based on touch sensing and speech recognition have already become mainstream, and the rapid developments in 3D sensing is paving the path towards the next level of machine intelligence and interactions. This paper discusses the recent developments in real-time 3D sensing technologies and their emerging system application.

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Design and Implementation of a Real-time Region Pointing System using Arm-Pointing Gesture Interface in a 3D Environment

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.290-293
    • /
    • 2009
  • In this paper, we propose a method to estimate pointing region in real-world from images of cameras. In general, arm-pointing gesture encodes a direction which extends from user's fingertip to target point. In the proposed work, we assume that the pointing ray can be approximated to a straight line which passes through user's face and fingertip. Therefore, the proposed method extracts two end points for the estimation of pointing direction; one from the user's face and another from the user's fingertip region. Then, the pointing direction and its target region are estimated based on the 2D-3D projective mapping between camera images and real-world scene. In order to demonstrate an application of the proposed method, we constructed an ICGS (interactive cinema guiding system) which employs two CCD cameras and a monitor. The accuracy and robustness of the proposed method are also verified on the experimental results of several real video sequences.

  • PDF

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

Real-Time 3-D Ultrasound Imaging Method using a 2-D Curved Array (이차원 곡면 어레이를 이용한 실시간 3차원 초음파 영상화 기법)

  • 김강식;한호산;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.351-364
    • /
    • 2002
  • Conventional 3D ultrasound imaging using mechanical ID arrays suffers from poor elevation resolution due to the limited depth-of-focus (DOF). On the other hand, 3D imaging systems using 2D phased arrays have a large number of active channels and hence require a very expensive and bulky beamforming hardware. To overcome these limitations, a new real-time volumetric imaging method using curved 2-D arrays is presented, in which a small subaperture, consisting of 256 elements, moves across the array surface to scan a volume of interest. For this purpose, a 2-D curved array is designed which consists of 90$\times$46 elements with 1.5λ inter-element spacing and has the same view angles along both the lateral and elevation directions as those of a commercial mechanical 1-D array. In the proposed method, transmit and receive subapertures are constructed by cutting the four corners of a rectangular aperture to obtain a required image qualify with a small number of active channels. In addition the receive subaperture size is increased by using a sparse array scheme that uses every other elements in both directions. To suppress the grating lobes elevated due to the increase in clement spacing, fold-over array scheme is adopted in transmit, which doubles the effective size of a transmit aperture in each direction. Computer simulation results show that the proposed method can provide almost the same and greatly improved resolutions in the lateral and elevation directions, respectively compared with the conventional 3D imaging with a mechanical 1-D array.

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Hyperpolarization: Sensitivity Boost in Magnetic Resonance Spectroscopy and Imaging

  • Ko, Hyeji;Gong, Gyeonghyeon;Jeong, Gijin;Choi, Ikjang;Seo, Hyeonglim;Lee, Youngbok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.124-131
    • /
    • 2015
  • Hyperpolarization methods are the most emerging techniques in the field of magnetic resonance (MR) researches since they make a contribution to overcoming sensitivity limitation of MR spectroscopy and imaging, leading to new fields of researches, real-time in vivo metabolic/molecular imaging and MR analysis of chemical/biological reactions in non-equilibrium conditions. Make use of enormous signal enrichments, it becomes feasible to investigate various chemical and biochemical systems with low ${\gamma}$ nuclei in real-time. This review deals with the theoretical principals of common hyperpolarization methods and their experimental features. In addition, more detailed theories, mechanisms, and applications of dissolution dynamic nuclear polarization (D-DNP) are discussed.

Computer-generated integral imaging system used in virtual reality (가상현실에 이용할 수 있는 컴퓨터 생성 집적 영상 시스템)

  • Seok, Myeong-Hun;Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.158-159
    • /
    • 2005
  • Three-dimensional(3D) integral imaging system which can be used in a virtual reality system is proposed. The proposed system uses a new image mapping algorithm which can achieve the real time processing, which is indispensable for the virtual reality system. 3D images generated by the advanced graphic software such as OpenGL API can be directly used without complex adaptation. Therefore, the computer-generated integral imaging system using the proposed mapping algorithm can be successfully applied to virtual reality.

  • PDF