• Title/Summary/Keyword: Real mapping

Search Result 749, Processing Time 0.027 seconds

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.385-397
    • /
    • 2003
  • In this paper, we introduce and study a system of nonlinear implicit variational inclusions (SNIVI) in real Banach spaces: determine elements $x^{*},\;y^{*},\;z^{*}\;\in\;E$ such that ${\theta}\;{\in}\;{\alpha}T(y^{*})\;+\;g(x^{*})\;-\;g(y^{*})\;+\;A(g(x^{*}))\;\;\;for\;{\alpha}\;>\;0,\;{\theta}\;{\in}\;{\beta}T(z^{*})\;+\;g(y^{*})\;-\;g(z^{*})\;+\;A(g(y^{*}))\;\;\;for\;{\beta}\;>\;0,\;{\theta}\;{\in}\;{\gamma}T(x^{*})\;+\;g(z^{*})\;-\;g(x^{*})\;+\;A(g(z^{*}))\;\;\;for\;{\gamma}\;>\;0,$ where T, g : $E\;{\rightarrow}\;E,\;{\theta}$ is zero element in Banach space E, and A : $E\;{\rightarrow}\;{2^E}$ be m-accretive mapping. By using resolvent operator technique for n-secretive mapping in real Banach spaces, we construct some new iterative algorithms for solving this system of nonlinear implicit variational inclusions. The convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces and in real Banach spaces, respectively.

A real-time QRS complex detection algorithm using topological mapping in ECG signals (심전도 신호의 위상학적 팹핑을 이용한 실시간 QRS 검출 알고리즘)

  • 이정환;정기삼;이병채;이명호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.48-58
    • /
    • 1998
  • In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.

  • PDF

Real-Time Color Gamut Mapping Method Based on the Three-Dimensional Difference Look-Up Table (3차원 차분 룩업 테이블을 이용한 실시간 색역 사상 기법)

  • Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.111-120
    • /
    • 2005
  • A cost effective three-dimensional color gamut mapping architecture is described. The conventional three-dimensional reduced resolution look-up table is considered and the concept of three-dimensional reduced resolution difference look-up table is introduced for cost effective and real-time color gamut mapping. The overall architecture uses one-dimensional memory decomposition of three-dimensional gamut mapping look-up table, three-dimensional interpolation and simple addition operation for generating the final gamut mapped colors. The required computational cost is greatly reduced by look-up table resolution adjustment and further reduced by the gamut mapping rule modification. The proposed architecture greatly reduces the required memory size and hardware complexity compared to the conventional method and it is suitable for real-time applications. The proposed hardware is suitable for FPGA and ASIC implementation and could be applied to the real-time display quality enhancement purposes.

Implementation of Real-time VJing System for Live Projection Mapping Performance (라이브 프로젝션 매핑 공연을 위한 실시간 VJing 시스템 구현)

  • Noh, Seon;Lee, Jaejoong;Park, Jin Wan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.55-66
    • /
    • 2013
  • In these days, small devices like smartphones, TV, and projectors are popular, and they are being developed rapidly. The projector is being used in cinema and exhibition because it makes a big screen. This feature makes new expression named projection-mapping in art world. Projection-mapping is being utilized extensively in stages of performances, and it use variety of shape's screens. But projection-mapping has limitation in space. So in this paper, we propose new performance system for projection-mapping and it make possible to overcome many difficulties. Also, we discuss the result of using the system in actual performance. We hope to develop the utilization of projection-mapping in performance.

A Study on the Use of Drones for Disaster Damage Investigation in Mountainous Terrain (산악지형에서의 재난피해조사를 위한 드론 맵핑 활용방안 연구)

  • Shin, Dongyoon;Kim, Dajinsol;Kim, Seongsam;Han, Youkyung;Nho, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1209-1220
    • /
    • 2020
  • In the case of forest areas, the installation of ground control points (GCPs) and the selection of terrain features, which are one of the unmanned aerial photogrammetry work process, are limited compared to urban areas, and safety problems arise due to non-visible flight due to high forest. To compensate for this problem, the drone equipped with a real time kinematic (RTK) sensor that corrects the position of the drone in real time, and a 3D flight method that fly based on terrain information are being developed. This study suggests to present a method for investigating damage using drones in forest areas. Position accuracy evaluation was performed for three methods: 1) drone mapping through GCP measurement (normal mapping), 2) drone mapping based on topographic data (3D flight mapping), 3) drone mapping using RTK drone (RTK mapping), and all showed an accuracy within 2 cm in the horizontal and within 13 cm in the vertical position. After evaluating the position accuracy, the volume of the landslide area was calculated and the volume values were compared, and all showed similar values. Through this study, the possibility of utilizing 3D flight mapping and RTK mapping in forest areas was confirmed. In the future, it is expected that more effective damage investigations can be conducted if the three methods are appropriately used according to the conditions of area of the disaster.

NEW INEQUALITIES FOR THE MOMENTS OF GUESSING MAPPING

  • Dragomir, S.S.;Hoek, J. Van Der
    • East Asian mathematical journal
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Using some inequalities for real numbers and integrals we print out here some new inequalities for the moments of guessing mapping which complement the recent results of Arikan [1] and Boztas [2].

  • PDF

Real-Time Color Gamut Mapping Method Based on the Three-Dimensional Look-Up Table and Tetrahedral Interpolation (사면체 보간 방법과 3차원 룩업 테이블을 이용한 실시간 색역폭 매핑)

  • Kim, Kyoung-Seok;Lee, Hak-Sung;Kwon, Do-Hyung;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.693-694
    • /
    • 2006
  • The high definition digital TV display devices need real-time gamut mapping. This paper proposes a gamut mapping algorithm that used three dimensional reduced resolution look up table and tetrahedral interpolation for real-time processing. The proposed hardware architecture is successfully implemented in FPGA and ASIC.

  • PDF

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.