• Title/Summary/Keyword: Real coded

Search Result 225, Processing Time 0.03 seconds

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Solving a New Multi-Period Multi-Objective Multi-Product Aggregate Production Planning Problem Using Fuzzy Goal Programming

  • Khalili-Damghani, Kaveh;Shahrokh, Ayda
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.369-382
    • /
    • 2014
  • This paper introduces a new multi-product multi-period multi-objective aggregate production planning problem. The proposed problem is modeled using multi-objective mixed-integer mathematical programming. Three objective functions, including minimizing total cost, maximizing customer services level, and maximizing the quality of end-product, are considered, simultaneously. Several constraints such as quantity of production, available time, work force levels, inventory levels, backordering levels, machine capacity, warehouse space and available budget are also considered. Some parameters of the proposed model are assumed to be qualitative and modeled using fuzzy sets. Then, a fuzzy goal programming approach is proposed to solve the model. The proposed approach is applied on a real-world industrial case study of a color and resin production company called Teiph-Saipa. The approach is coded using LINGO software. The efficacy and applicability of the proposed approach are illustrated in the case study. The results of proposed approach are compared with those of the existing experimental methods used in the company. The relative dominance of the proposed approach is revealed in comparison with the experimental method. Finally, a data dictionary, including the way of gathering data for running the model, is proposed in order to facilitate the re-implementation of the model for future development and case studies.

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.

Development of a Rapid Control Prototyping Platform for Engine Control System (엔진 제어시스템을 위한 래피드 콘트롤 프로토타이핑 플랫폼에 관한 연구)

  • 송정현;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-165
    • /
    • 2003
  • The design and implementation of an engine control system has become an important area in developing a new car, but the implementation of an engine control system is becoming a tedious and time-consuming work as the level of complexity increases. In order to shorten the development cycle of the control system, rapid control prototyping (RCP) technique deserves developers' attention. A new RCP platform has been developed for an automotive engine control application. This prototyping system strictly adheres to the layered architecture of the final production ECU, and separates the automatically generated part of software, or the application area, from the hand coded area, which generally carefully designed and tested because of the hardware dependency and the efficiency of microcontroller. The $Matlab{\circledR}$ tool-chain of Mathworks Inc. has been selected as a base environment in this study. A newly developed Engine Control Toolbox of Real-Time $Workshop{\circledR}$ converts a graphically represented control algorithm into optimized application codes and links them with other parts of the software to generate executable code for the target processor.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Construction of Information Management System for User Customized Manufacturing Process (사용자 맞춤형 제조공정 정보관리 시스템 구축 방안)

  • Kim, Tae-Hoon;Moon, Chang-Bae;Kim, Byeong-Man;Lee, Hyun-Ah;Kim, Hyun-Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2012
  • This paper suggests a way to construct an information management system for manufacturing process not by modifying existing solutions but by designing and developing its own solution, then examines its effects. To solve problems of existing systems, objects to be managed are organized and coded hierarchically so that a management system becomes more flexible and efficient in handling user's various needs and changes of equipments. We also provide user-customized reporting function where reporting forms are dynamically constructed depending on user's need. To validate our approach, we implement a real system and illustrate some useful examples.

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms (유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행)

  • Jeon Kweon-Soo;Kwon O-Hung;Park Jong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

A Dynamic Queue Management for Network Coding in Mobile Ad-hoc Network

  • Kim, Byun-Gon;Kim, Kwan-Woong;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Network Coding (NC) is a new paradigm for network communication. In network coding, intermediate nodes create new packets by algebraically combining ingress packets and send it to its neighbor node by broadcast manner. NC has rapidly emerged as a major research area in information theory due to its wide applicability to communication through real networks. Network coding is expected to improve throughput and channel efficiency in the wireless multi-hop network. Many researches have been carried out to employ network coding to wireless ad-hoc network. In this paper, we proposed a dynamic queue management to improve coding opportunistic to enhance efficiency of NC. In our design, intermediate nodes are buffering incoming packets to encode queue. We expect that the proposed algorithm shall improve encoding rate of network coded packet and also reduce end to end latency. From the simulation, the proposed algorithm achieved better performance in terms of coding gain and packet delivery rate than static queue management scheme.