• Title/Summary/Keyword: Real Time Framework

Search Result 688, Processing Time 0.023 seconds

A Universal Pricing Scheme for the WiMAX Services

  • Suk, Seung-Hak;Lee, Hoon;Lee, Kwang-Hui
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.334-343
    • /
    • 2008
  • In this work we propose a universal pricing machine, which incorporates a universal pricing framework for the future IEEE802.16 WiMAX service with multiple classes of service. A multimedia service is provided by a QoS provisioning scheme in the WiMAX network and universal pricing means that it can compute the price for any type of service in a unified framework. In the proposed pricing framework we incorporate multiple types of services such as the real time and nonreal time services that are supposed to be provided in the WiMAX network. To that purpose, let us first carry out an analysis on the current pricing scheme of Korean WiMAX service which incorporates only the data size. From that analysis we propose a new pricing scheme for the future WiMAX service that provides different service classes in the network. Via numerical experiment, we verify the implication of the work.

Physics-Based Real-Time Simulation of Thin Rods (가는 막대의 물리기반 실시간 시뮬레이션)

  • Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as 1D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin rods has been remaining a challenge in computer graphics. We adopt the energy formulation based on continuum mechanics, and develop a modal warping technique for rods that can integrate the governing equation in real-time. This novel simulation framework results from making extensions to the original modal warping technique, which was developed for the simulation of 3D solids. Experiments show that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or twisting deformations with acceptable realism.

Simultaneous Motion Recognition Framework using Data Augmentation based on Muscle Activation Model (근육 활성화 모델 기반의 데이터 증강을 활용한 동시 동작 인식 프레임워크)

  • Sejin Kim;Wan Kyun Chung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2024
  • Simultaneous motion is essential in the activities of daily living (ADL). For motion intention recognition, surface electromyogram (sEMG) and corresponding motion label is necessary. However, this process is time-consuming and it may increase the burden of the user. Therefore, we propose a simultaneous motion recognition framework using data augmentation based on muscle activation model. The model consists of multiple point sources to be optimized while the number of point sources and their initial parameters are automatically determined. From the experimental results, it is shown that the framework has generated the data which are similar to the real one. This aspect is quantified with the following two metrics: structural similarity index measure (SSIM) and mean squared error (MSE). Furthermore, with k-nearest neighbor (k-NN) or support vector machine (SVM), the classification accuracy is also enhanced with the proposed framework. From these results, it can be concluded that the generalization property of the training data is enhanced and the classification accuracy is increased accordingly. We expect that this framework reduces the burden of the user from the excessive and time-consuming data acquisition.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

The Design of Manufacturing Simulation Modeling Based on Digital Twin Concept (Digital Twin 개념을 적용한 제조환경 시뮬레이션 모형 설계)

  • Hwang, Sung-Bum;Jeong, Suk-Jae;Yoon, Sung-Wook
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.11-20
    • /
    • 2020
  • As the manufacturing environment becomes more complex, traditional simulation models alone are having a lot of difficulties in reflecting real-time manufacturing situations. Although the Digital Twin concept is actively discussed as an alternative to overcome theses issues, many studies are being carried out only in the product design phase. This research presents a Digital Twin-based manufacturing environment framework for applying the Digital Twin concept to the manufacturing process. Twin model that is operated in virtual space, physical system and databases describing the actual manufacturing environment, are proposed as detailed components that make up the framework. To check the applicability of proposed framework, a simple Digital Twin-based manufacturing system was simulated in a conveyor system using Arena software and Excel VBA. Experiment results have shown that the twin model is transmitted real time data from the physical system via DB and were operating in the same time unit. The Excel VBA fitted parameters defined by cycle time based on historical data that real-time and training data are being accumulated together. This study proposes operating method of digital twin model through the simple experiment examples. The results lead to the applicability of Digital twin model.

Design of AMI Robot Control System Using PSD and Back Propagation Algorithm (PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Design of AM1 Robot Control System Using PSD and Back Propagation Algorithm (PSD 및 역전파 알고리즘를 이용한 AM1 로봇의 제어 시스템 설계)

  • 이재욱;서운학;이종붕;이희섭;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.239-243
    • /
    • 2001
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Real-time Data Integration using Ontology and Semantic Mediators (온톨로지와 시맨틱 중재 에이전트를 이용한 실시간 통합 환경 구축에 관한 연구)

  • Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.16 no.4
    • /
    • pp.151-178
    • /
    • 2006
  • The objective of this research is to develop a formal framework and methodology to facilitate real-time data integration, thus enabling semantic interoperability among distributed and heterogeneous information systems. The proposed approach is based on the concepts of "ontology" and "semantic mediators." An ontology is developed and used to capture the intension (including structure, integrity rules and meta-properties) of the database schema. We also develop the agent communication protocol for semantic reconciliation, which is based on the theory of speech acts and agent communication language. This protocol is used by a set of semantic mediators, which automatically detect and resolve various semantic conflicts at the data- and schema-levels by referring to the ontology. A mediation-based query processing technique is developed to provide uniform and integrated access to the multiple heterogeneous information sources. Prototype tools are being implemented to provide proof of concept for this work.

Robust control of industrial robot using back propagation algorithm and PSD (역전파 알고리즘 및 PSD를 이용한 로봇의 결실제어)

  • 이재욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.171-175
    • /
    • 2000
  • Neural networks are in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Design of Industrial Robot Control System Using PSD and Back Propagation Algorithm (PSD 및 역전파 알고리즘을 이용한 산업용 로봇의 제어 시스템 설계)

  • 이재욱;이희섭;김휘동;김재실;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.108-112
    • /
    • 2000
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF