• Title/Summary/Keyword: Real Security

Search Result 1,826, Processing Time 0.027 seconds

Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis (Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스)

  • Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1277-1286
    • /
    • 2018
  • In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.

Hippocratic XML Databases: A Model and Access Control Mechanism (히포크라테스 XML 데이터베이스: 모델 및 액세스 통제 방법)

  • Lee Jae-Gil;Han Wook-Shin;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.684-698
    • /
    • 2004
  • The Hippocratic database model recently proposed by Agrawal et al. incorporates privacy protection capabilities into relational databases. Since the Hippocratic database is based on the relational database, it needs extensions to be adapted for XML databases. In this paper, we propose the Hippocratic XML database model, an extension of the Hippocratic database model for XML databases and present an efficient access control mechanism under this model. In contrast to relational data, XML data have tree-like hierarchies. Thus, in order to manage these hierarchies of XML data, we extend and formally define such concepts presented in the Hippocratic database model as privacy preferences, privacy policies, privacy authorizations, and usage purposes of data records. Next, we present a new mechanism, which we call the authorization index, that is used in the access control mechanism. This authorization index, which is Implemented using a multi-dimensional index, allows us to efficiently search authorizations implied by the authorization granted on the nearest ancestor using the nearest neighbor search technique. Using synthetic and real data, we have performed extensive experiments comparing query processing time with those of existing access control mechanisms. The results show that the proposed access control mechanism improves the wall clock time by up to 13.6 times over the top-down access control strategy and by up to 20.3 times over the bottom-up access control strategy The major contributions of our paper are 1) extending the Hippocratic database model into the Hippocratic XML database model and 2) proposing an efficient across control mechanism that uses the authorization index and nearest neighbor search technique under this model.

Counter Measures by using Execution Plan Analysis against SQL Injection Attacks (실행계획 분석을 이용한 SQL Injection 공격 대응방안)

  • Ha, Man-Seok;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.76-86
    • /
    • 2016
  • SQL Injection attacks are the most widely used and also they are considered one of the oldest traditional hacking techniques. SQL Injection attacks are getting quite complicated and they perform a high portion among web hacking. The big data environments in the future will be widely used resulting in many devices and sensors will be connected to the internet and the amount of data that flows among devices will be highly increased. The scale of damage caused by SQL Injection attacks would be even greater in the future. Besides, creating security solutions against SQL Injection attacks are high costs and time-consuming. In order to prevent SQL Injection attacks, we have to operate quickly and accurately according to this data analysis techniques. We utilized data analytics and machine learning techniques to defend against SQL Injection attacks and analyzed the execution plan of the SQL command input if there are abnormal patterns through checking the web log files. Herein, we propose a way to distinguish between normal and abnormal SQL commands. We have analyzed the value entered by the user in real time using the automated SQL Injection attacks tools. We have proved that it is possible to ensure an effective defense through analyzing the execution plan of the SQL command.

Analysis of Health Care Service Trends for The Older Adults Based on ICT (국내외 ICT기반 노인 건강관리 서비스 동향분석)

  • Lee, Sung-Hyun;Hong, Sung Jung;Kim, Kyung Mi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.373-383
    • /
    • 2021
  • Our society is aging rapidly. In this super-aged society, the increase in healthcare costs are considered a national problem that undermines the sustainability of social security. Various services for healthcare for the elderly have been promoted to address this. However, most of them have focused on healthcare after the outbreak of chronic diseases and lack preventive healthcare. Most of the preventive healthcare projects are only pilots. In this paper, the current status of health care services for senior citizens at home and abroad was analyzed and based on this, the limitations and improvements were analyzed to propose the establishment of IoT-based Total Silver Care Center. IoT-based Total Silver Care Center may be conveniently monitored the health status of the elderly through various sensors, medical devices, and smart bands. And based on this, it can improve the quality of nursing services through time-saving and work efficiency of nursing providers. In addition, health care interventions may be provided in a timely manner if there is a change in the health status of users. And real-time imaging systems can help overcome mental difficulties.

Fire Detection using Deep Convolutional Neural Networks for Assisting People with Visual Impairments in an Emergency Situation (시각 장애인을 위한 영상 기반 심층 합성곱 신경망을 이용한 화재 감지기)

  • Kong, Borasy;Won, Insu;Kwon, Jangwoo
    • 재활복지
    • /
    • v.21 no.3
    • /
    • pp.129-146
    • /
    • 2017
  • In an event of an emergency, such as fire in a building, visually impaired and blind people are prone to exposed to a level of danger that is greater than that of normal people, for they cannot be aware of it quickly. Current fire detection methods such as smoke detector is very slow and unreliable because it usually uses chemical sensor based technology to detect fire particles. But by using vision sensor instead, fire can be proven to be detected much faster as we show in our experiments. Previous studies have applied various image processing and machine learning techniques to detect fire, but they usually don't work very well because these techniques require hand-crafted features that do not generalize well to various scenarios. But with the help of recent advancement in the field of deep learning, this research can be conducted to help solve this problem by using deep learning-based object detector that can detect fire using images from security camera. Deep learning based approach can learn features automatically so they can usually generalize well to various scenes. In order to ensure maximum capacity, we applied the latest technologies in the field of computer vision such as YOLO detector in order to solve this task. Considering the trade-off between recall vs. complexity, we introduced two convolutional neural networks with slightly different model's complexity to detect fire at different recall rate. Both models can detect fire at 99% average precision, but one model has 76% recall at 30 FPS while another has 61% recall at 50 FPS. We also compare our model memory consumption with each other and show our models robustness by testing on various real-world scenarios.

Comparative Analysis on Digital Currency Models and Electronic Payments (중앙은행의 디지털화폐 발행방식 및 전자지급수단의 비교분석)

  • Yoon, Jae-Ho;Kim, Yong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.63-72
    • /
    • 2022
  • With the advent of cryptocurrencies such as Bitcoin in 2009, the paradigm of money, a means of payment, has been changing significantly. And it has a great impact on our daily lives. Thus central banks have attempted various analyzes on the issuance and impact of digital currencies including electronic payments but a study on which issuance method is suitable is insufficient. In this study, the issuance of digital currency was analyzed compared to the electronic payments which are currently used. As a result, the account-based model did not show any significant differences from the current RTGS(real-time gross settlement systems) and retail payment systems. But the token-based model is expected that it can improve the efficiency of finance and induce technological innovation in the financial field. However, it was analyzed that this model would weaken the intermediary function of financial institutions such as loans due to the characteristics of digital signature technology. In addition, in order to protect consumers against security attacks such as hacking and phishing of CBDCs, legal and institutional supports similar to the current electronic payment method are required, and continuous technology development efforts are also required for the CBDC issuance model to maintain convenience and anonymity equivalent to cash.

A Sanitizer for Detecting Vulnerable Code Patterns in uC/OS-II Operating System-based Firmware for Programmable Logic Controllers (PLC용 uC/OS-II 운영체제 기반 펌웨어에서 발생 가능한 취약점 패턴 탐지 새니타이저)

  • Han, Seungjae;Lee, Keonyong;You, Guenha;Cho, Seong-je
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.65-79
    • /
    • 2020
  • As Programmable Logic Controllers (PLCs), popular components in industrial control systems (ICS), are incorporated with the technologies such as micro-controllers, real-time operating systems, and communication capabilities. As the latest PLCs have been connected to the Internet, they are becoming a main target of cyber threats. This paper proposes two sanitizers that improve the security of uC/OS-II based firmware for a PLC. That is, we devise BU sanitizer for detecting out-of-bounds accesses to buffers and UaF sanitizer for fixing use-after-free bugs in the firmware. They can sanitize the binary firmware image generated in a desktop PC before downloading it to the PLC. The BU sanitizer can also detect the violation of control flow integrity using both call graph and symbols of functions in the firmware image. We have implemented the proposed two sanitizers as a prototype system on a PLC running uC/OS-II and demonstrated the effectiveness of them by performing experiments as well as comparing them with the existing sanitizers. These findings can be used to detect and mitigate unintended vulnerabilities during the firmware development phase.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

High-Quality Standard Data-Based Pharmacovigilance System for Privacy and Personalization (프라이버시와 개인화를 위한 고품질 표준 데이터 기반 약물감시 시스템 연구)

  • SeMo Yang;InSeo Song;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.125-131
    • /
    • 2023
  • Globally, drug side effects rank among the top causes of death. To effectively respond to these adverse drug reactions, a shift towards an active real-time monitoring system, along with the standardization and quality improvement of data, is necessary. Integrating individual institutional data and utilizing large-scale data to enhance the accuracy of drug side effect predictions is critical. However, data sharing between institutions poses privacy concerns and involves varying data standards. To address this issue, our research adopts a federated learning approach, where data is not shared directly in compliance with privacy regulations, but rather the results of the model's learning are shared. We employ the Common Data Model (CDM) to standardize different data formats, ensuring accuracy and consistency of data. Additionally, we propose a drug monitoring system that enhances security and scalability management through a cloud-based federated learning environment. This system allows for effective monitoring and prediction of drug side effects while protecting the privacy of data shared between hospitals. The goal is to reduce mortality due to drug side effects and cut medical costs, exploring various technical approaches and methodologies to achieve this.

Volume Rendering System of e-Science Electron Microscopy using Grid (Gird를 이용한 e-사이언스 전자현미경 볼륨 랜더링 시스템)

  • Jeong, Won-Gu;Jeong, Jong-Man;Lee, Ho;Choe, Sang-Su;Ahn, Young-heon;Hur, Man-Hoi;Kim, Jay;Kim, Eunsung;Jung, Im Y.;Yeom, Heon Y.;Cho, Kum Won;Kweon, Hee-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.560-564
    • /
    • 2007
  • Korea Basic Science Institute(KBSI) has three general electron microscopes including High Voltage Electron Microscope(HVEM) which is the only one in Korea. Observed images through an electron microscope are what they are tilted by each step and saved, offering the more better circumstances for observers, a reconstruction to 3D could be a essential process. In this process, a warping method decreases distortions maximumly of avoided parts of a camera's focus. All these image treatment processes and 3D reconstruction processes are based on an accompaniment of a highly efficient computer, a number of Grid Node Personal computers share this process in a short time and dispose of it. Grid Node Personal computers' purpose is to make an owner can share different each other and various computing resources efficiently and also Grid Node Personal computers is applying to solve problems like a role scheduling needed for a constructing system, a resource management, a security, a capacity measurement, a condition monitoring and so on. Grid Node Personal computers accomplish roles of a highly efficient computer that general individuals felt hard to use, moreover, a image treatment using the warping method becomes a foundation for reconstructing to more closer shape with an real object of observation. Construction of the electron microscope volume 랜더링 system based on Grid Node Personal computer through the warping process can offer more convenient and speedy experiment circumstances to observers, and makes them meet with experiment outcome that is similar to real shapes and is easy to understand.

  • PDF