• Title/Summary/Keyword: Reader Protocol

Search Result 175, Processing Time 0.022 seconds

An Energy Saving Protocol to Eliminate Overhearing Problem in Active RFID System (능동형 RFID 시스템에서 태그의 Overhearing을 제거하기 위한 에너지 절약 프로토콜)

  • Lee, Chae-Seok;Kim, Dong-Hyun;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Reducing the energy that consumed by tag is a key requirement for the wider acceptance of the active RFID systems that use battery constrained tags. When the reader is not interrogating, the active RFID standard protocols try to reduce energy consumption of tags by using sleep mode. On sleep mode tags is active by receiving a specific signals from reader, until tag receive a sleep mode command from the reader, a tag waste energy for remaining in RX mode. Overhearing is a state of a tag in which it wastes energy for maintaining active RX state while there is no frame destined to it. According to our analysis, the amount of energy consumed by a tag due to overhearing is several time larger than that consumed by the effective communication. We propose RANO(Reservation Aloha for No Overhearing) that is designed to inform a tag of its effective communication intervals to eliminate overhearing problem in active RFID communication. The performance of the proposed protocol was evaluated through the real world by changing the number of tags and size of data. The result of an experiment, the proposed protocol performed saving about 22 times less than the standard protocol did.

A Secure Yoking-Proof Protocol Providing Offline Verification (오프라인 검증을 지원하는 안전한 요킹증명 프로토콜)

  • Ham, Hyoungmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • RFID (Radio Frequency Identification) yoking authentication provides methods scanning a pair of RFID tags with a reader device and verifying them to ensure the physical proximity of objects. In the first yoking proof protocols, a verifier connected to a reader device online is essential to verify the yoking proof, and this condition limits the environment in which yoking proof can be applied. To solve this limitation, several studies have been conducted on offline yoking proof protocol that does not require the online connection between a reader and a verifier. However, the offline yoking proof protocols do not guarantee the basic requirements of yoking proof, and require relatively more operations on the tag compared to the previous yoking proof protocols. This paper proposes an efficient offline yoking proof protocol that supports offline verification without the need for an online verifier. The proposed protocol provides a secure yoking proof with fewer number of operations than the existing ones, and it also can be extended to the group proof for more than a pair of tags without additional devices. The analysis in this paper shows that the proposed protocol provides offline verification securely and effectively.

A revised Query Tree Protocol for Tag Identification in RFID Systems (RFID 시스템에서 태그 식별을 위한 개선된 쿼리 트리 프로토콜)

  • Lim, In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.491-494
    • /
    • 2005
  • In this paper, a QT_rev protocol is proposed for identifying all the tags within the identification range. The proposed QT_rev protocol revises the QT protocol, which has a memoryless property. In the QT_rev protocol, the tag will send the remaining bits of their identification codes when the query string matches the first bits of their identification codes. After the reader receives all the responses of the tags, it knows which bit is collided. If the collision occurs in the last bit, the reader can identify two tags simultaneously without further query.

  • PDF

Secure Mutual Authentication Protocol for RFID System without Online Back-End-Database (온라인 백-엔드-데이터베이스가 없는 안전한 RFID 상호 인증 프로토콜)

  • Won, Tae-Youn;Yu, Young-Jun;Chun, Ji-Young;Byun, Jin-Wook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • RFID is one of useful identification technology in ubiquitous environments which can be a replacement of bar code. RFID is basically consisted of tag, reader, which is for perception of the tag, and back-end-database for saving the information of tags. Although the usage of mobile readers in cellular phone or PDA increases, related studies are not enough to be secure for practical environments. There are many factors for using mobile leaders, instead of static leaders. In mobile reader environments, before constructing the secure protocol, we must consider these problems: 1) easy to lose the mobile reader 2) hard to keep the connection with back-end-database because of communication obstacle, the limitation of communication range, and so on. To find the solution against those problems, Han et al. suggest RFID mutual authentication protocol without back-end-database environment. However Han et al.'s protocol is able to be traced tag location by using eavesdropping, spoofing, and replay attack. Passive tag based on low cost is required lots of communication unsuitably. Hence, we analyze some vulnerabilities of Han et al.'s protocol and suggest RFID mutual authentication protocol without online back-end-database in aspect of efficiency and security.

Analyses of Security and Privacy Issues in Ultra-weight RFID Protocol

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.441-446
    • /
    • 2011
  • Radio frequency identification (RFID) tags are cheap and simple devices that can store unique identification information and perform simple computation to keep better inventory of packages. Security protocol for RFID tags is needed to ensure privacy and authentication between each tag and their reader. In order to accomplish this, in this paper, we analyzed a lightweight privacy and authentication protocol for passive RFID tags.

Development of Embedded RFID R/W System Using PXA255 ARM Chip (PXA255 ARM칩을 활용한 임베디드 RFID R/W 시스템 개발)

  • Hwang, G.H.;Jang, W.T.;Sim, H.J.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.61-67
    • /
    • 2006
  • In this paper it was introduced that embedded RFID Reader /Writer system including PXA255 ARM chip which enables the Tag signal to be used by data and video processing via IEEE 802.11 communication protocol. Embedded RFID R/W middle ware was developed which transmit the searched result in the data base using the received Tag signal via IEEE 802.11 communication protocol. Developed embedded RFID R/W system was composed of three parts - PXA255 ARM chid (Core Part) 13.56 MHz RFID Reader /Writer, wireless LAN for data communication with server and TFT-LCD terminal. Once this system receives the Tag signal through the serial port, it transmits the data through the wireless LAN to the server and it displays the received image data which was processed by the server onto the TFT-LCD screen. Embedded RFID R/W Middle ware transmits the received Tag signal from RFID R/W to the embedded system, which activates the socket program to connect to the window server via IEEE 802.11 communication protocol and transmits the Tag signal. Window server program searches the Database using this Tag information and displays the result on to the TFT-LCD window in the embedded system via IEEE 802.11 protocol.

Design and Implementation of System in Package for a HF/UHF Multi-band RFID Reader (HF/UHF 멀티밴드 RFID 리더의 SiP 설계 및 구현)

  • An, Kwang-Dek;Yi, Kyeong-Il;Kim, Ji-Gon;Cho, Jung-Hyun;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.59-65
    • /
    • 2008
  • We have proposed a UHF/HF multi-band RFID reader, and have implemented it into a system in a package(SiP). The proposed SiP RFID reader has been designed to support both for EPCgloabal Class1 Generation2 protocol of UHF band, and 13.56MHz RFID protocols of ISO14443 A/B type, and ISO15693 standards. The operating mode is controlled by embedded RISC core, and the mode can be selected by users. The area of implemented SiP is $40mm{\times}40mm$ with 4 metal layers. The implemented reader SiP operates at single supply voltage of 3.3V. The maximum current consumption is 210mA. The operating distances are 5cm for 13.56MHz modes, and 20cm for UHF mode.

A Secure and Efficient RFID Tag Search Protocol Protecting Mobile Reader's Privacy (이동형 리더의 프라이버시를 보호하는 안전하고 효율적인 RFID 태그 검색 프로토콜)

  • Choi, Hyun-Woo;Yeo, Don-Gu;Jang, Jae-Hoon;Youm, Heung-Youl
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.109-117
    • /
    • 2010
  • Recently, study on RFID Tag Searching technique which is used to find a specific tag in particular tag group were developed continuously. RFID tag searching technique can be applicate in various fields such as product management, finding children, and electronic anklet. To implement a RFID tag search system, RFID tag searching protocol should be considered various security threats such as reader and tag tracking, privacy, etc. For implementing a safe RFID tag lookup system, it is important to consider the potential security threats such as the tag tracking problem, and the privacy of the owner of the tag reader problem. There exists an RFID tag lookup system that satisfies a few security requirements, but the privacy of the owner of the tag reader problem has still been left unsolved, and even if it were solved, it requires a considerable amount of cryptographic operations to be performed which results in a decrease in performance. This paper proposes a system that does not degrade the performance while solving the privacy of the owner of the tag reader problem.

Multichannel Anticollision Protocol for Improving Tag Collection Performance in Active RFID Systems (능동형 RFID 시스템에서 태그 수집 성능 향상을 위한 다중채널 기반 충돌방지 프로토콜)

  • Yoon, Won-Ju;Chung, Sang-Hwa;Park, Shin-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.50-57
    • /
    • 2009
  • Tag collection is one of the major functions in RFID systems. In this paper, we propose a multichannel slotted-aloha anticollision protocol to mitigate the tag collision problem and improve tag collection performance in active RFID systems. In the proposed anticollision protocol, while an RFID reader transmits commands to multiple RFID tags via a common channel, it receives multiple tag responses over multiple channels simultaneously. We also implemented an active RFID system supporting the proposed anticollision protocol. In experiments with the implemented reader and 60 tags, the proposed dual-channel slotted-aloha anticollision protocol showed a large improvement in tag collection performance compared with the single-channel slotted-aloha anticollision protocol. With 60 tags, the average time spent on tag collection using the dual-channel anticollision protocol was 600.543 ms, which was 46.3% of the 1289.721 ms required using the single-channel anticollision protocol.

Improved RFID Authentication Protocol Based on SSG (SSG기반 개선된 RFID 인증 프로토콜)

  • Park, Taek-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Recently, RFID is substituted for bar codes according to advance in the ubiquitous computing environments, but the RFID system has several problems such as security and privacy because it uses radio frequencies. Firstly, unauthorized reader can easily read the ID information of any Tag. Secondly, Attacker can easily fake the legitimate reader using the collected Tag ID information,such as the any legitimate tag. This paper proposed improved RFID authentication protocol based on SSG. SSG is organized only one LFSR and selection logic. Thus SSG is suitable for implementation of hardware logic in system with extremely limited resources such as RFID tag and it has resistance to known various attacks because of output bit stream for the use as pseudorandom generator. The proposed protocol is secure and effective because it is based on SSG.