• Title/Summary/Keyword: Reactor stability

Search Result 345, Processing Time 0.02 seconds

Characteristics under the Iron Core Conditions of the Flux-lock Reactor (자속구속리액터의 철심조건에 따른 특성)

  • Lee, Na-Young;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Han, Tae-Hee;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.875-876
    • /
    • 2006
  • Superconducting fault currents(SFCLs) are expected to improve not only reliability but also stability of power systems. The analysis on current limiting operations of the flux-lock type SFCL, which consists of a flux-lock reactor wound an iron core and a YBCO thin film, was compared the open-loop with the closed-loop iron core of the subtractive polarity winding. In the SFCL, operation characteristics could be controlled by adjusting the inductances and the winding directions of the coils, then magnetic field induced in the iron core. The current limiting characteristics under the same experimental conditions were generated regardless of the iron core conditions. We confirmed that capacity of the SFCL was increased effectively by the closed-loop iron core. However, the power burden of the system could be lowered by the open-loop iron core.

  • PDF

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation (실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론)

  • Kim, Sung-Woo;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.132-141
    • /
    • 2013
  • This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Combustion Stability and the Properties of Methane/Air Mixture Subjected to Unsteady Flow Fluctuations (비정상 유동의 메탄/공기 혼합기 반응안정성 효과 연구)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • Flame extinction and the chemistry of stoichiometric methane/air mixture were investigated numerically in the PSR(perfectly stirred reactor). For the study, PSR code was modified to be possible to unsteady calculation, and the sinusoidal fluctuation was subjected to the residence time. In the region of residence time far from the extinction limit, combustion mode was strongly dependent on the frequency. The low frequency excitation provided the quasi-steady behavior on the temperature and the concentrations of related species, but small variation of temperature was observed under high frequency. In the region of residence time near the extinction limit, the mixture subjected above 1 KHz was still reacting even though extinction had to be occurred under quasi-steady concept. The attenuation of extinction limit resulted from that chemical time was comparable to the flow time. The mean mole fractions of both NO and CO were almost same regardless of imposed frequency. However, the average mole fraction of $C_2H_2$ was decreased as increasing frequency, which implies that soot yield might be reduced at the higher frequency of flow excitation. The result provides the basic concept for flame stabilization, and it will be used to design a mild combustor.

A Systematic Engineering Approach to Design the Controller of the Advanced Power Reactor 1400 Feedwater Control System using a Genetic Algorithm

  • Tran, Thanh Cong;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.58-66
    • /
    • 2018
  • This paper represents a systematic approach aimed at improving the performance of the proportional integral (PI) controller for the Advanced Power Reactor (APR) 1400 Feedwater Control System (FWCS). When the performance of the PI controller offers superior control and enhanced robustness, the steam generator (SG) level is properly controlled. This leads to the safe operation and increased the availability of the nuclear power plant. In this paper, a systems engineering approach is used in order to design a novel PI controller for the FWCS. In the reverse engineering stage, the existing FWCS configuration, especially the characteristics of the feedwater controller as well as the feedwater flow path to each SG from the FWCS, were reviewed and analysed. The overall block diagram of the FWCS and the SG was also developed in the reverse engineering process. In the re-engineering stage, the actual design of the feedwater PI controller was carried out using a genetic algorithm (GA). Lastly, in the validation and verification phase, the existing PI controller and the PI controller designed using GA method were simulated in Simulink/Matlab. From the simulation results, the GA-PI controller was found to exhibit greater stability than the current controller of the FWCS.

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating (고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향)

  • Kim, Jeong-Min;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2019
  • Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Differentiation in Nitrogen-Converting Activity and Microbial Community Structure between Granular Size Fractions in a Continuous Autotrophic Nitrogen Removal Reactor

  • Qian, Feiyue;Chen, Xi;Wang, Jianfang;Shen, Yaoliang;Gao, Junjun;Mei, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1798-1807
    • /
    • 2017
  • The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of $0.24g/(g\;VSS{\cdot}h)$, were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of $40.4mg/(g\;VSS{\cdot}h)$ under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few Nitrospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.

Investment Decision-making Behaviors and Profitability of the Hospital (병원의 투자결정행태와 수익성)

  • Lee, Chang-Eun;Hwang, In-Kyoung;Chung, Young-Il;Jung, Key-Sun
    • Korea Journal of Hospital Management
    • /
    • v.5 no.1
    • /
    • pp.156-175
    • /
    • 2000
  • This study was designed to find out the relations between the major investment decision-making behaviors and profitability of the hospital. A total of 57 hospitals were analyzed on this study. The major findings were as follows; 1. Among the types of the investment decision-making, major factors affecting the profitability were where the top management belongs among the defender, analyzer, prospector, and reactor type. Other factors were whether or not hospital analyzes which is more economical between the purchase by cash and lease of the medical equipment and whether or not hospital changes the decision before the actual investment. 2, Among the types of the investment decision-making, major factors affecting the financial structure and efficient operation of the assets were ranking of the priority and whether or not hospitals can get enough revenue and cash flow when hospitals have to borrow a big amount of fund from outside. 3. Among the financial indices regarding the financial stability, major factor affecting the profitability was fixed assets to long-tenn capital. Other factors affecting the financial structure and efficient operation of the assets were value added to medical equipment, normal profit to medical equipment, liability to total assets, current ratio, value added to payroll expenses. 4. Investment decision-making behaviors are partially influencing on the financial structure and efficient operation of the assets. However it was proved that the profitability was the most influencial factor than other factors related with the operation of the hospital. 5. To improve the irrational investment decision-making behaviors strategic management system should be introduced, and the top mamagement's investment decision-making style should be changed from reactor and analyser styles to prospector and reactor ones.

  • PDF