• Title/Summary/Keyword: Reactor safety

Search Result 1,268, Processing Time 0.023 seconds

Systems Engineering Process Approach to the Probabilistic Safety Assessment for a Spent Fuel Pool of a Nuclear Power Plant (사용후핵연료저장조의 확률론적안전성평가 수행을 위한 시스템엔지니어링 프로세스 적용 연구)

  • Choi, Jin Tae;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • The spent fuel pool (SFP) of a nuclear power plant functions to store the spent fuel. The spent fuel pool is designed to properly remove the decay heat generated from the spent fuel. If the cooling function is lost and proper operator action is not taken, the spent fuel in the storage pool can be damaged. Probabilistic safety assessment (PSA) is a safety evaluation method that can evaluate the risk of a large and complex system. So far, the probabilistic safety assessment of nuclear power plants has been mainly performed on the reactor. This study defined the requirements and the functional architecture for the probabilistic safety assessment of the spent fuel pool (SFP-PSA) by applying the systems engineering process. And, a systematic and efficient methodology was defined according to the architecture.

Study on the Pressure Balance of the Hybrid Safety Injection Tank (피동충수용 혼합형 안전주입탱크의 압력평형에 관한 이론적 해석 및 시험적 연구)

  • Ryu, Sung Uk;Ryu, Hyobong;Byun, Sun-Joon;Jeon, Woo-Jin;Park, Hyun-Sik;Lee, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2016
  • The Hybrid Safety Injection Tank is a passive safety injection system that enables the safety injection water to be injected into the reactor pressure vessel throughout all operating pressures by connecting the top of the SIT and the pressurizer(PZR). In this study, the condition for balancing the pressure between the Hybrid SIT and PZR was derived theoretically. The pressure balancing condition was set at the point where the velocity of the Hybrid SIT coolant injected into the Direct Vessel Injection(DVI) line was at or above zero. If the condition was derived from a pressure network for the Hybrid SIT, pressurizer, and reactor pressure vessel, the pressure difference between the pressurizer and SIT is less than 0.07 MPa.

Effectiveness of Crew Resource Management Training Program for Operators in the APR-1400 Main Control Room Simulator (국내 원자력발전소 첨단 주제어실의 Crew Resource Management 교육훈련 효과 분석)

  • Kim, Sa-Kil;Byun, Seong-Nam;Lee, Dhong-Hoon;Jeong, Choong-Heui
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • The objective of the study is to evaluate the effectiveness of Crew Resource Management (CRM) training program for operators in the Main Control Room (MCR) simulator of APR-1400 Nuclear Power Plant. The experiments were conducted for two different crews of operators performing six different emergency operating scenarios during four-week period. Each crew consisted of the five operators: senior reactor operator, safety technical advisor, reactor operator, turbine operator, and electric operator. All crews (Crew A and B) participated in the training program for the technical knowledge and skills which were required to operate the simulator of the MCR during the first week. To verify the effectiveness of the CRM training program; however, only Crew A was selected to attend the CRM training after the technical knowledge and skills training. The results of the experiments showed that the CRM training program improved the individual attitudes of Crew A significantly. Team skills of Crew A were found to be significantly better than those of Crew B. The CRM training did not have positive effects on enhancing the individual performance of Crew A; however, as compared to that of Crew B. Implication of these findings was discussed further in detail.

He Generation Evaluation on Electrodeposited Ni After Neutron Exposure (중성자 조사에 따른 Ni도금피복재에서의 He발생량평가)

  • Hwang, Seong Sik;Kwon, Junhyun;Kim, Dong Jin;Kim, Sung Woo
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Neutron dose level at bottom head of a reactor pressure vessel (RPV) was calculated using reactor vessel neutron transport for a Korean nuclear power plant A. At 34 EFPY with a 40-year (2042) design life after plating repair, irradiation fast neutron effect was 6.6x1015 n/cm2. As helium(He) gas can be generated by Ni only at 1/106 level of 5 × 1021 n/cm2, He generation possibility in the Ni plating layer is very little during 40 years of operation (2042, 34 EFPY). Thermal neutrons can significantly affect the generation of He from Ni metal. At 10 years after a repair, He can be generated at a level of about 0.06 appm, a level that can add general welding repair without any consideration. After 40 years of repair, 9.8 appm of He may be generated. Although this is a rather high value, it is within the range of 0.1 to 10 appm when welding repair can be applied. Clad repair by Ni electroplating technology is expected to greatly improve the operation efficiency by improving the safety and shortening the maintenance period of the nuclear power plant.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

Theoretical simulation on evolution of suspended sodium combustion aerosols characteristics in a closed chamber

  • Narayanam, Sujatha Pavan;Kumar, Amit;Pujala, Usha;Subramanian, V.;Srinivas, C.V.;Venkatesan, R.;Athmalingam, S.;Venkatraman, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2077-2083
    • /
    • 2022
  • In the unlikely event of core disruptive accident in sodium cooled fast reactors, the reactor containment building would be bottled up with sodium and fission product aerosols. The behavior of these aerosols is crucial to estimate the in-containment source term as a part of nuclear reactor safety analysis. In this work, the evolution of sodium aerosol characteristics (mass concentration and size) is simulated using HAARM-S code. The code is based on the method of moments to solve the integro-differential equation. The code is updated to FORTRAN-77 and run in Microsoft FORTRAN PowerStation 4.0 (on Desktop). The sodium aerosol characteristics simulated by HAARM-S code are compared with the measured values at Aerosol Test Facility. The maximum deviation between measured and simulated mass concentrations is 30% at initial period (up to 60 min) and around 50% in the later period. In addition, the influence of humidity on aerosol size growth for two different aerosol mass concentrations is studied. The measured and simulated growth factors of aerosol size (ratio of saturated size to initial size) are found to be matched at reasonable extent. Since sodium is highly reactive with atmospheric constituents, the aerosol growth factor depends on the hygroscopic growth, chemical transformation and density variations besides coagulation. Further, there is a scope for the improvement of the code to estimate the aerosol dynamics in confined environment.

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

Analysis of control rod driving mechanism nozzle rupture with loss of safety injection at the ATLAS experimental facility using MARS-KS and TRACE

  • Hyunjoon Jeong;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2002-2010
    • /
    • 2024
  • Korea Atomic Energy Research Institute (KAERI) has operated an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), with reference to the APR1400 (Advanced Power Reactor 1400) for tests for transient and design basis accidents simulation. A test for a loss of coolant accident (LOCA) at the top of the reactor pressure vessel (RPV) had been conducted at ATLAS to address the impact of the loss of safety injections (LSI) and to evaluate accident management (AM) actions during the postulated accident. The experimental data has been utilized to validate system analysis codes within a framework of the domestic standard problem program organized by KAERI in collaboration with Korea Institute of Nuclear Safety. In this study, the test has been analyzed by using thermal-hydraulic system analysis codes, MARS-KS 1.5 and TRACE 5.0 Patch 6, and a comparative analysis with experimental and calculation results has been performed. The main objective of this study is the investigation of the thermal-hydraulic phenomena during a small break LOCA at the RPV upper head with the LSI as well as the predictability of the system analysis codes after the AM actions during the test. The results from both codes reveal that overall physical behaviors during the accident are predicted by the codes, appropriately, including the excursion of the peak cladding temperature because of the LSI. It is also confirmed that the core integrity is maintained with the proposed AM action. Considering the break location, a sensitivity analysis for the nodalization of the upper head has been conducted. The sensitivity analysis indicates that the nodalization gave a significant impact on the analysis result. The result emphasizes the importance of the nodalization which should be performed with a consideration of the physical phenomena occurs during the transient.

MULTIPHASE FLOW IN EX-VESSEL COOLABILITY: DEVELOPMENT OF AN INNOVATIVE CONCEPT

  • CORRADINI MICHAEL L.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The paper provides the background of past experiments as well as key fundamentals that are needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability.

Algorithms for Reliability Calculation of Multistate System

  • Seong Cheol Lee
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.173-178
    • /
    • 2001
  • This paper studies the structure and reliability of homogeneous s-coherent multistate system. We describe efficiency of inclusion-exclusion algorithm and pivotal decomposition algorithm for reliability calculation of 2-states system which developed in (Lee 1999) [10]. We extend our method, applied in [10], to the case when components of the system are given multi-states. As an application, the high pressure injection system of a pressurized water reactor is modeled as a multistate system composed of homogeneous s-coherent multistate subsystems. And Several examples are illustrated.

  • PDF