• Title/Summary/Keyword: Reactor containment

Search Result 178, Processing Time 0.023 seconds

Containment Closure Time Following the Loss of Shutdown Cooling Event of YGN Units 3&4

  • Seul, Kwang-Won;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.68-79
    • /
    • 1999
  • The YGN Units 3&4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling (SDC) event. For the five cases of typical reactor coolant system (RCS) configurations under the worst event sequence, such as unavailable secondary cooling and no RCS inventory makeup, the thermal hydraulic analyses were performed using the RELAP5/MOD3.2 code to investigate the plant behavior following the event. The thermal hydraulic analyses include the estimation of time to boil, time to core uncovery, and time to core heat up to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. The result indicates that the containment closure is recommended to be achieved within 42 minutes after the loss of SDC for the steam generator (SG) inlet plenum manway open case or the large cold leg open case under the worst event sequence. The containment closure time is significantly dependent on the elevation and size of the opening and the SG secondary water level condition. It is also found that the containment closure needs to be initiated before the boiling time to ensure the survivability of the workers in the containment. These results will provide useful information to operators to cope with the loss of SDC event.

  • PDF

Feasibility of Long Term Feed and Bleed Operation For Total Loss of Feedwater Event

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 1996
  • The conventional Equipment Environment Qualification (EEQ) envelope is developed based on the containment responses during the design basis events. The Safety Depressurization System (SDS) design without In-containment Refueling Water Storage Tank (IRWST) adopted in the Ulchin 3&4 challenges the conventional EEQ envelope during long term Feed and Bleed (F&B) operation due to the direct discharge of high mass and energy into the containment. Therefore, it is necessary to confirm that the containment pressure and temperature history during the long term F&B operation does not violate the conventional EEQ envelope. However, this subject has never been quantitatively assessed before. To investigate the success path of long term F&B operation this paper analyzes the thermal hydraulic response of the containment and Reactor Coolant System (RCS) until the completion of depressurization and cooldown of RCS into Shutdown Cooling System (SCS) entry condition. It is found that the SCS entry condition can be reached within 6 hours without violating the EEQ curve by proper operation of SDS valves, High Pressure Safety Injection (HPSI) pumps and active Containment Heat Removal System (CHRS). The suggested strategy not only demonstrates the feasibility of long term F&B operation but also can be utilized in the preparation of Emergency Procedure Guidelines (EPGs)

  • PDF

Risk Assessment for Abolition of Gross Containment Leak Monitoring System Test in CANDU Design Plant (중수로 원자로건물 총누설감시계통 시험 중지에 따른 리스크 영향 평가)

  • Bae, Yeon-Kyoung;Na, Jang-Hwan;Bahng, Ki-In
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.123-130
    • /
    • 2015
  • Wolsong Unit 2,3&4 has been performing a containment integrity test during power operation. This test could impact to the safe operation during test. If an accident occurs during pressure dropping phase, reactor trip can be delayed because of the increased pressure difference which causes a time delay to reach the trip set-point. On the contrary, if an accident occurs during pressure increasing phase, reactor trip could be accelerated because the pressure difference to the trip set-point decrease. Point Lepreau nuclear power plant, which installed GCLMS (Gross Containment Leakage Monitoring System) in 1990, has discontinued the test since 1992 due to these adverse effects. Therefore, we evaluated the risk to obviate the GCLMS test based on PWR's ILRT (Integrated Leak Rate Test) extension methodologies. The results demonstrate that risk increase rate is not high in case of performing only ILRT test at every 5 years instead of doing GCLMS test at every 1.5 years. In addition, the result shows that GCLMS test can be removed on a risk-informed perspective since risk increasement is in acceptable area of regulatory acceptance criteria.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

THE OPAL (OPEN POOL AUSTRALIAN LIGHT-WATER) REACTOR IN AUSTRALIA

  • Kim Sung-Joong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.443-448
    • /
    • 2006
  • The OPAL (Open Pool Australian Light-water) reactor is currently being constructed to replace HIFAR (HI-Flux Australian Reactor, commissioned in 1958) in mid-2006. HIFAR will be shutdown for decommissioning after several months of simultaneous operation with OPAL for smooth transition of operating systems and business. OPAL is a 20 MW multipurpose research reactor for radioisotope production, irradiation services and neutron beam research. The OPAL reactor uses low enriched uranium fuel in a compact core, cooled by light water and moderated by heavy water, yielding maximum thermal flux not less than $4{\times}10^{14}ncm^{-2}s^{-1}$. The reactor containment building is constructed of reinforced concrete and has been designed to protect the reactor from all external events such as seismic occurrences and impact from a hypothetical light aircraft crash. This paper describes the main elements of the reactor design and its applications.

Feasibility Study of Beta Detector for Small Leak Detection inside the Reactor Containment

  • Jang, JaeYeong;Schaarschmidt, Thomas;Kim, Yong Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.154-159
    • /
    • 2018
  • Background: To prevent small leakage accidents, a real-time and direct detection system for small leaks with a detection limit below that of existing systems, e.g. $0.5gpm{\cdot}hr^{-1}$, is required. In this study, a small-size beta detector, which can be installed inside the reactor containment (CT) building and detect small leaks directly, was suggested and its feasibility was evaluated using MCNPX simulation. Materials and Methods: A target nuclide was selected through analysis of radiation from radionuclides in the reactor coolant system (RCS) and the spectrum was obtained via a silicon detector simulated in MCNPX. A window was designed to reduce the background signal caused by other nuclides. The sensitivity of the detector was also estimated, and its shielding designed for installation inside the reactor CT. Results and Discussion: The beta and gamma spectrum of the silicon detector showed a negligible gamma signal but it also contained an undesired peak at 0.22 MeV due to other nuclides, not the $^{16}N$ target nuclide. Window to remove the peak was derived as 0.4 mm for beryllium. The sensitivity of silicon beta detector with a beryllium window of 1.7 mm thickness was derived as $5.172{\times}10^{-6}{\mu}Ci{\cdot}cc^{-1}$. In addition, the specification of the shielding was evaluated through simulations, and the results showed that the integrity of the silicon detector can be maintained with lead shielding of 3 cm (<15 kg). This is a very small amount compared to the specifications of the lead shielding (600 kg) required for installation of $^{16}N$ gamma detector in inside reactor CT, it was determined that beta detector would have a distinct advantage in terms of miniaturization. Conclusion: The feasibility of the beta detector was evaluated for installation inside the reactor CT to detect small leaks below $0.5gpm{\cdot}hr^{-1}$. In future, the design will be optimized on specific data.

A Study on the Two Phase Flow in the Floor of Containment Building after a Loss of Coolant Accident (냉각재 상실사고 후 격납건물내의 이상유동 연구)

  • Bae, Jin-Hyo;Park, Man Heung;Koh, Chul-Kyun;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1274-1284
    • /
    • 1999
  • The Regulatory Guide 1.82 recommends an analysis of hydraulic performance for sump of ECCS (Emergency Core Cooing System) when LOCA(Loss of Coolant Accident) occurs in a nuclear power plant. The present study deals with 3-dimensional, unsteady, turbulent and two-phase flow simulation to examine the behavior of mixture of reactor coolant and debris near the floor of containment building in conjunction with appropriate assumptions. The dispersed solid model has been adjusted to the interfacial momentum transfer between reactor coolant and debris. According to the results, the counterclockwiserecirculation zone had been formed in the region between sump and connection aisle about 376 second after LOCA occurs. The debris thickness accumulated on a sump screen periodically increases or decreases up to 2000 second, afterwards its peak decreases.

Information Needs and Instrument Availability for Accident Management : Application to YGN 3&4

  • Kim, Jaewhan;Park, Rae-Jun;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.551-562
    • /
    • 1996
  • This paper introduces the five-step methodology for identifying information needs and assessing instrument availability during the course of severe accidents in nuclear power plants. The methodology is applied to the Yonggwang (YGN) 3&4 to shed light on accident management. It constructs three safety objective trees to prevent the reactor vessel failure, to prevent the containment failure, and to mitigate the fission product release from the containment. The study assesses information needs and instrument availability under severe conditions for preventing the reactor vessel failure of YGN 3&4, and recommends additional instrument that m8y prove to be of vital importance in managing the accident.

  • PDF

DEVELOPMENT AND VALIDATION OF THE AEROSOL TRANSPORT MODULE GAMMA-FP FOR EVALUATING RADIOACTIVE FISSION PRODUCT SOURCE TERMS IN A VHTR

  • Yoon, Churl;Lim, Hong Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.825-836
    • /
    • 2014
  • Predicting radioactive fission product (FP) behaviors in the reactor coolant system and the containment of a nuclear power plant (NPP) is one of the major concerns in the field of reactor safety, since the amount of radioactive FP released into the environment during the postulated accident sequences is one of the major regulatory issues. Radioactive FPs circulating in the primary coolant loop and released into the containment are basically in the form of gas or aerosol. In this study, a multi-component and multi-sectional analysis module for aerosol fission products has been developed based on the MAEROS model [1,2], and the aerosol transport model has been developed and verified against an analytic solution. The deposition of aerosol FPs to the surrounding structural surfaces is modeled with recent research achievements. The developed aerosol analysis model has been successfully validated against the STORM SR-11 experimental data [3], which is International Standard Problem No. 40. Future studies include the development of the resuspension, growth, and chemical reaction models of aerosol fission products.