• Title/Summary/Keyword: Reactor Core

Search Result 1,010, Processing Time 0.02 seconds

A NEW BOOK: 'LIGHT-WATER REACTOR MATERIALS'

  • OLANDER DONALD R.;MOTTA ARTHUR T.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.309-316
    • /
    • 2005
  • The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the $UO_2$ fuel, Zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed.

Development of Sodium Voiding Model for the KALIMER Analysis

  • Chang, Won-Pyo;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.286-300
    • /
    • 2002
  • An algorithm for the sodium boiling model has been developed for calculation of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. Modeling of sodium boiling in liquid metal reactors using sodium as a coolant is necessary because of phenomenon difference comparing with that observed generally in light water reactor systems. The applied model to the algorithm is the multiple-bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbies that (ill the whole cross section of the coolant channel except for the liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble The present study is focused on not only demonstration of the vapor bubble behavior predicted by the developed model, but also confirmation of a qualitative acceptance for the model. As a result, the model can represent important phenomena in the sodium boiling, but it is found that further effort is also needed for its completition.

MASTER - An Indigenous Nuclear Design Code of KAERI

  • Cho, Byung-Oh;Lee, Chang-Ho;Park, Chan-Oh;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.21-27
    • /
    • 1996
  • KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers.

  • PDF

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Determination of plutonium and uranium content and burnup using six group delayed neutrons

  • Akyurek, T.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.943-948
    • /
    • 2019
  • In this study, investigation of spent fuel was performed using six group delayed neutron parameters. Three used fuels (F1, F2, and F11) which are burnt over the years in the core of Missouri University of Science and Technology Reactor (MSTR), were investigated. F16 fresh fuel was used as plutonium free fuel element and compared with irradiated used fuels to develop burnup and Pu discrimination method. The fast fission factor of the MSTR was calculated to be 1.071 which was used for burnup calculations. Burnup values of F2 and F11 fuel elements were estimated to be 1.98 g and 2.7 g, respectively. $^{239}Pu$ conversion was calculated to be 0.36 g and 0.50 g for F2 and F11 elements, respectively.

Novel homogeneous burnable poisons in pressurized water reactor ceramic fuel

  • Dodd, Brandon;Britt, Taylor;Lloyd, Cody;Shah, Manit;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2874-2879
    • /
    • 2020
  • Due to excess reactivity, fresh nuclear fuel often contains burnable poisons. This research looks at six different burnable poisons and their impacts on reactivity, material attractiveness, and waste management. An MCNP simulation of a PWR fuel pin was performed with a fuel burnup of 60 GWd/MTHM to determine when each burnable poison fuel type would decrease below a k of 1. For determining the plutonium material attractiveness in each burnable poison fuel type, the plutonium isotopic content of the used fuel was evaluated using Bathke's Figure of Merit formula. For the waste management analysis, the thermal output of each burnable poison fuel type was determined through ORIGEN decay simulations at 100 and 300 years after being discharged from the core. The performance of all six burnable poisons varied over the three criteria considered and no single burnable poison performed best in all three considerations.

Establishment of the Procedure to Prevent Boron Precipitation During Post-LOCA Long Term Cooling for WH 3-Loop NPPs

  • Cho, H.R.;Lee, S.K.;Ban, C.H.;Hwang, S.T.;Chang, B.H.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.47-57
    • /
    • 1998
  • Boric acid concentrations of the refueling water storage tank and the accumulators for Westinghouse 3-loop type plants are increased to meet the post loss of coolant accident shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling capability following a LOCA, the switchover time is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that hot leg recirculation switchover times are shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3&4 and 8 hours from 18 hours for Ulchin 1&2, respectively. The How path in the mode J for Kori 3&4 is recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1&2.

  • PDF

Analysis on Study Cases of Safety Assessment and Cases for Spent Nuclear Fuel Pool Accident (사용후핵연료 습식저장시설 사고 안전성 평가 연구 현황 및 사고 사례 분석)

  • Shin Dong Lee;Hyeok Jae Kim;Geon Woo Son;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Spent nuclear fuel corresponds to high-level radioactive waste that has high decay heat and radioactivity. Accordingly, Spent nuclear fuel withdrawn from the reactor core is primarily stored and managed in a spent nuclear fuel pool in the nuclear power plant to reduce decay heat and radioactivity. In Korea, most nuclear power plant store all spent nuclear fuel in a spent nuclear fuel pool. For wet storage, there are no defense in depth different with reactor core. The study related to spent nuclear fuel pool accident should be carried out to ensure safety. Therefore, it is necessary to analyze previous study cases related to safety of spent nuclear fuel pool and accident cases to build foundational knowledge. The Objective of this study is to analyze study cases of safety assessment and cases for spent nuclear fuel pool accident. For analyzing study cases of safety assessment, possible phenomena when spent nuclear fuel pool accident occurring identified, Subsequently, study cases for safety assessment about each phenomena were investigated, and materials & methods and results for each study are analyzed. For analyzing cases for spent nuclear fuel pool accident, we analyzed accident cases caused by loss of cooling and loss of coolant in spent nuclear fuel pool. Subsequently, causes and change of water level and temperature by each accident case are analyzed. As a result of the analysis on study cases of spent nuclear fuel pool accident, the results of the study conducted by each research institute were vary depending on the computer code, materials & methods of experiment and major assumptions used in the study. As a result of analyzing cases for spent nuclear fuel pool accident, it was found that accident cases for loss of cooling is more than cases for loss of coolant accident. Even though the types of accident in spent nuclear fuel pool were similar, the specific causes were different by each accident case. All the accident cases analyzed did not lead to severe accidents, such as nuclear fuel being exposed to the air. The result of this study will be used as fundamental data for study on spent nuclear fuel pool accident that will be conducted in the future.

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.