Browse > Article
http://dx.doi.org/10.1016/j.net.2017.04.008

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark  

Shaukat, Nadeem (Seoul National University)
Ryu, Min (Seoul National University)
Shim, Hyung Jin (Seoul National University)
Publication Information
Nuclear Engineering and Technology / v.49, no.5, 2017 , pp. 920-927 More about this Journal
Abstract
With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.
Keywords
C5G7-TD; Dynamic Monte Carlo; McCARD; nTRACER; Transient Analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nucl. Sci. Eng. 175 (2013) 94-107.   DOI
2 B.L. Sjenitzer, J.E. Hoogenboom, J.J. Escalante, V.S. Espinoza, Coupling of dynamic Monte Carlo with thermal-hydraulic feedback, Ann. Nucl. Energy 76 (2015) 27-39.   DOI
3 Y.G. Jo, B. Cho, N.Z. Cho, Nuclear reactor transient analysis by continuousenergy Monte Carlo calculation based on predictor-corrector quasi-static method, Nucl. Sci. Eng. 183 (2016) 229-246.   DOI
4 E.L. Kaplan, Monte Carlo Methods for Equilibrium Solutions in Neutron Multiplication, UCRL-5275-T, Lawrence Livermore National Laboratory, 1958.
5 L.M. Petrie, N.F. Cross, KENO-V.a: an Improved Monte Carlo Criticality Program with Supergrouping, NUREG/CR-0200, Sec. Fll, ORNL/NUREG/CSD-2 vol. 2, Oak Ridge National Laboratory, 1985.
6 J.F. Briesmeister (Ed.), MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625, Los Alamos National Laboratory, 1993.
7 J.T. Mihalczo, T.E. Valentine, Calculational verification and process control applications utilizing the high sensitivity of noise measurement parameters to fissile system configuration, Nucl. Sci. Eng. 121 (1995) 286-300.   DOI
8 T.E. Valentine, J.T. Mihalczo, MCNP-DSP: a neutron and gamma ray Monte Carlo calculation of source-driven noise-measured parameters, Ann. Nucl. Energy 23 (1996) 1271-1287.   DOI
9 D.E. Cullen, TART 2002: a Coupled Neutron-photon, 3-D, Combinatorial Geometry, Time Dependent Monte Carlo Transport Code, UCRL-ID-126455, Rev. 4, Lawrence Livermore National Laboratory, 2002.
10 U. Wiacek, E. Krynicka, Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems-Monte Carlo simulations using MCNP standard data libraries, Nucl. Instrum. Methods Phys. Res. B 243 (2006) 92-98.   DOI
11 C.H. Pyeon, Experimental Benchmarks on Thorium-loaded Accelerator-driven System at Kyoto University Critical Assembly, KURR-TR(CD)-48, Research Reactor Institute, Kyoto University, 2015.
12 T.E. Booth, A Weight (Charge) Conserving Importance-weighted Comb for Monte Carlo, LA-UR-96-0051, Los Alamos National Laboratory, 1996.
13 D.E. Cullen, C.J. Clouse, R. Procassini, R.C. Little, Static and Dynamic Criticality: Are They Different? UCRL-TR-201506, Lawrence Livermore National Laboratory, 2003.
14 D. Brockway, P. Soran, P. Whalen, Monte Carlo ${\alpha}$ Calculation, LA-UR-85-1224, Los Alamos National Laboratory, 1985.
15 N. Shaukat, H.J. Shim, Alpha eigenvalue estimation from dynamic Monte Carlo calculation for subcritical systems, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 11-13, 2016.
16 H.J. Shim, S.H. Jang, S.M. Kang, Monte Carlo alpha iteration algorithm for a subcritical system analysis, Sci. Technol. Nucl. Ins. 2015 (2015) 859242. http://dx.doi.org/10.1155/2015/859242.   DOI
17 H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2012) 161-176.   DOI
18 V.F. Boyarinov, P.A. Fomichenko, J. Hou, K. Ivanov, A. Aures, W. Zwermann, K. Velkov, Deterministic Time-dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD), Version 1.6, NEA/NSC/DOC(2016), OECD Nuclear Energy Agency, 2016.
19 M. Aufiero, C. Fiorina, A. Laureau, P. Rubiolo, V. Valtavirta, Serpent-OpenFoam Coupling in transient mode: simulation of a Godiva prompt critical burst, in: Proceedings of ANS MC2015-Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, TN, 2015.
20 J. Lieberoth, A Monte Carlo technique to solve the static eigenvalue problem of the Boltzmann transport equation, Nukleonik 11 (1968) 213-219.
21 Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374.   DOI
22 A.F. Henry, The application of reactor kinetics to the analysis of experiments, Nucl. Sci. Eng. 3 (1958) 52-70.   DOI
23 A.F. Henry, Nuclear-Reactor Analysis, MIT Press, Cambridge, MA, 1975.
24 E. Lewis, M. Smith, N. Tsoulfanidis, G. Palmiotti, T. Taiwo, R. Blomquist, Benchmark Specification for Deterministic 2-D/3-D MOX Fuel Assembly Transport Calculations without Spatial Homogenization (C5G7 MOX), NEA/NSC, 2001.