• Title/Summary/Keyword: Reactor Applications

Search Result 245, Processing Time 0.031 seconds

Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode (아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Air-Conditioner Power Source Device to Meet the Harmonic Guide Lines (고조파 규제값에 적합한 에어컨 전원장치)

  • Mun, Sang-Pil;Park, Yeong-Jo;Seo, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.581-586
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage-doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown by experimentation and confirmed simulation. The experimental results of the proposed diode rectifier satisfies the harmonic guide lines. A high input power factor of 97(%) and an efficiency of 98[%] are also obtained. The new rectifier with no controlled switches meet the harmonic guide lines, resulting in a simple, reliable and low-cost at-to dc converters in comparison with the boost-type current-improving circuits. This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance value is changed by the polarity of current or voltage. And this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit is constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduction and the power factor improvement. Half pulse-width modulated (HPWM) inverter was explained compared with conventional pulse width modulated(PWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

Synthesis, Characterization, and Catalytic Applications of Fe-MCM-41 (Fe-MCM-41의 제조, 물성조사 및 촉매적 응용 연구)

  • Yoon, Sang Soon;Choi, Jung Sik;Choi, Hyeong Jin;Ahn, Wha Seung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.215-221
    • /
    • 2005
  • A Fe-containing mesoporous silica (Fe-MCM-41) in which part of Si in the framework was replaced by Fe(Si-O-Fe) has been successfully prepared using $Fe^{3+}$ salt by a direct synthesis route. Physical properties of the material were characterized by XRD, $N_2$ adsorption, SEM/TEM, UV-vis and FT-IR spectroscopies. Fe-MCM-41 exhibited high catalytic activity in phenol hydroxylation using $H_2O_2$ as oxidant, giving phenol conversion of ca. 60% at $50^{\circ}C$ [phenol : $H_2O_2$ = 1:1, water solvent]. Fe-MCM-41 was also applied to the growth of CNTs, utilizing a thermal-CVD reactor using acetylene gas, which demonstrated that multi-wall CNTs could be prepared efficiently using the Fe-MCM-41 catalyst.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃ (950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화)

  • Kim, Dae-Jong;Kim, Weon-Ju;Jang, Ji-Eun;Yoon, Soon-Gil;Kim, Dong-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

Hierarchical Specification and Verification of Requirements using An Object-Oriented Petri Net (객체지향 페트리 넷을 이용한 계층적인 요구사항의 명세 및 검증)

  • Hong, Jang-Eui;Yoon, Il-Cheol;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2000
  • As the requirements of a software system become large and complex, it causes some problems such that requirements specification using formal methods becomes larger in its size and less understandable. In order to solve such problems, the concepts of modularity and object are adopted to specify the requirements. In addition, top-down and compositional approach to handle such requirements are also adopted. In our paper, we suggest an object-oriented Petri net, called HOONet, to hierarchically specify and verify the complex requirements by incorporating the concepts of modularity, object, abstraction and refinement into a formal method. Our HOONet method supports the incremental specification and verification of partially described or not yet fully analyzed requirements. We also show the applicability of our method by modeling and verifying the requirements of a reactor safety control system.

  • PDF

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Characteristics and Applications of Immobilized Glucoamylase (고정화 글루코아밀라제의 성질과 응용)

  • Cho, Sung-Hwan;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.233-238
    • /
    • 1985
  • Glucoamylases catalyze a stepwise hydrolysis of starch with the production of glucose. In order to make an efficient conversion of starch into glucose, glucoamylases prepared from Rhizopus spp. (Sigma Co.) were attached to a porous glass and immobilized by glutaraldehyde-induced crosslinking. The porous glass used in this study was $ZrO_2$ coated, $40{\sim}80$ mesh, 550 A pore diameter. Using the forgoing glass, we could couple as much as 50mg of protein per gram of carrier. Substrate for the glucoamylase was an enzyrne-modified thin-toiling 30% cornstarch solution used where greater solubility and low viscosity are desired. Immobilized glucoamylase had an optimum pH 7.0 to the alkaline side of soluble enzyme. Km values of immobilized and soluble enzyme were 1.04 mM and 1.25mM, respectively. The thermal stability of glucoamylase was increased by immobilization and the immobilized enzyme showed an optimum temperature at $40{\sim}60^{\circ}C$. The continuous conversion of cornstarch to glucose by use of immobilized glucoamylase resulted in the production of a more than 90 DE product.

  • PDF

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Review on bioleaching of uranium from low-grade ore (저품위(低品位) 우라늄철(鑛)의 미생물 침출법(浸出法))

  • Patra, A.K.;Pradhan, D.;Kim, D.J.;Ahn, J.G;Yoon, H.S.
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.30-44
    • /
    • 2011
  • This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$. Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.