• Title/Summary/Keyword: Reactive power sensitivity

Search Result 71, Processing Time 0.022 seconds

Minimizing Power Transmission Losses by Optimum Control of Reactive Power Flow (무효전력조류의 최적제어에 의한 전력손실 최소화 연구)

  • 김준현;유석구
    • 전기의세계
    • /
    • v.28 no.10
    • /
    • pp.41-47
    • /
    • 1979
  • The paper develops a method of minimizing power transmission losses by optimum control of reactive power flow. In the past, because the optimizing method considers as the first step the minimization of node voltage deviations and as the second step the minimization of transmission losses within the system, the calculating procedure was more complex and difficult to handle. In this paper, a new computing method for real time control on a digital computer is described which aims at a coordinated use of reactive power sources and voltage regulating devices. The power transmission losses are minimized by a gradient method while satisfying the constrained system voltage conditions and sensitivity parameters are the basis of the method.

  • PDF

A study on an algorithm based on sensitivity method for alleviating overloads in power networks (송전선로 과부하를 해소하기 위한 민감도에 근거한 알고리즘 연구)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.286-290
    • /
    • 2007
  • In this paper, a new algorithm based on sensitivity method for alleviating overloads in power networks is presented to find the switching branches effectively. Preferentially the switching of shunt reactive devices such as shunt reactor and shunt capacitors is performed. If overloads are not eliminated, the ranking of switching branches is calculated according to the algorithm based on sensitivity method and the switching of the ranked branches is performed in the order of ranking until overloads are eliminated. In order to show the effects of this algorithm, it is applied to a small scale power system of IEEE 39-bus test system.

  • PDF

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (선로정수 연속 조류계산을 이용한 가혹한 상정고장에 있어서 취약지역 도출방안에 대한 연구)

  • Seo Sang Soo;Lee Byong Jun;Kim Tae Ok;Kim Tae Kyun;Choo Jin Boo;Lee Jeong Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.113-116
    • /
    • 2004
  • Many methods to examine the vulnerable areal for the contingencies in the power system. The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can get the results of these analyses if only the results of load flow are convergent in severe contingencies, otherwise these methods are not adoptable. We can present a good index for overcoming severe contingencies, if we can get the vulnerable areas by bus sensitivity in severe contingencies, though the power flow equation is unsolvable. This paper simulates unsolvable severe contingencies by using branch parameter continuation power flow. We can compute the vulnerable areas in unsolvable severe contingencies by normal vector at a nose point of a $\nu-V$ curve. Presented method is checked the input reactive power of the vulnerable areas in KEPCO system.

  • PDF

A Study on the identical basis of static voltage stability analysis methods in power systems (전력 계통 정적 전압 안정도 해석법의 동일 근거에 관한 연구)

  • Moon, Young-Hyun;Kim, Baik;Lee, Eung-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.457-466
    • /
    • 1996
  • The Voltage stability problem has recently been dealt with in the literature from various points of view. The diverse theories have been established in voltage stability analysis because of the complicates of power systems and diverse phenomena of voltage collapse. Through rigorous mathematical operations, this paper shows that all the major methods used in static voltage stability, i.e - Jacobian method, voltage sensitivity method, real and reactive power loss sensitivity method and energy function method - have an identical background in theory. The results from the test in sample systems have shown the validity of this verification. (author). refs., figs., tabs.

  • PDF

Development of Accurate Load Model for Detailed Power System Stability Analysis (전력계통 안정도 정밀해석을 위한 적정 부하모델 개발)

  • Park, S.W.;Kim, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.201-205
    • /
    • 2001
  • This paper presents the load modeling process and bus load models for KEPCO power system. At first, load devices commonly used in KEPCO power systems were selected, and tested for measuring the voltage and frequency sensitivity of active and reactive power. From this test, about 40 voltage and frequency dependent load models have been obtained. The bus load composition rate for KEPCO power system has been determined using the various recent surveys and papers in order to develop the load model for a power system bus. To verify the accuracy of developed bus load models, the field test for measuring active and reactive power according to artificial variation of the bus voltage was performed at 8 substations for spring summer, autumn, winter cases. With data of this seasonal field test, more reliable bus load models for KEPCO power systems were developed.

  • PDF

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (BCPF)

  • Seo Sangsoo;Lee Byongjun;Kim Tae-Kyun;Song Hwachang
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.390-395
    • /
    • 2005
  • The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can only obtain the results of these analyses if the results of load flow are convergent in severe contingencies. Otherwise these methods are not adoptable. This paper presents a good index for overcoming severe contingencies, though the power flow equation is unsolvable using the branch parameter continuation power flow. In simulation, the Korea Electric Power Corporation (KEPCO) Systems are applied.

The Improvement of Continuation Power Flow System Including the Algorithm of Practical Step Length Selection (실용적인 스텝크기 선택 알고리듬을 고려한 연속조류계산 시스템의 개발)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Se-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.190-196
    • /
    • 1999
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near at steady-state voltage instability point in conventional power flow. Continuation power flow consists of predictor and corrector. In prddictor, the direction vector at the resent solution is caluculated and the initial guess of next solution is determined at the distance of step length. The selection of step length is a very important part, since computational speed and convergence performance are both greatly affected by the choice of the step length. This paper presents the practical step length selection algorithm using the reactive power generation sensitivith. In numulation, the proposed algorithm is compared with step length selection algorithm using TVI(tangent vector index).

  • PDF

Power System Stabilization Using SMES (초전도에너지 저장장치를 이용한 전력계통 안정도 향상)

  • 조병욱;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.213-219
    • /
    • 1985
  • Superconducting Magnetic Energy Storage (SMES) system can be used for power system stabilization by absorbing or discharging active and reactive power through thyristor-comtrolled converters. In this paper, we have proposed a control algorithm that the active and reactive powers of SMES are simultaneously controlled to increase power system dynamic stability. The proposed method was applied to one machine-infinite and three machines and three load model systems. And it has been shown that the proposed algorithm is more effective in power system stabilization than the conventional one that only the active power of SMES is controlled. Eigenvalue sensitivity analysis method is introduced to estimate the optimal location of SMES in the sense of the power system oscillation mode.

  • PDF

Voltage collapse proximity index based on system apparent power loss sensitivity and its application to VAR investment (피상전력 손실감도에 의한 전압붕괴 근접도 지표와 무효전력 투자)

  • 이상중;김건중;김원겸;김용배;엄재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.10
    • /
    • pp.1290-1294
    • /
    • 1995
  • In this paper, a new voltage collapse proximity index (VCPI) based on system apparent power loss sensitivity is proposed. The newly proposed index .lambda.$^{Sloss}$ reaches -.inf. at system voltage collapse point and can be represented by .root..lambda.$^{Ploss}$$^{2}$+.lambda.$^{Qloss}$$^{2}$ where .lambda.$^{Ploss}$ and .lambda.$^{Qloss}$ are the VCPI based on the system active and reactive power loss sensitivity respectively. These indices can be used for the system VAR investment. .DELTA.Q [VAR] is invested, step by step, by the priority of the VCPI index given for each bus. The indices use information from normal power flow equations and their Jacobians. Computation time for deriving .lambda.$^{Sloss}$ is almost same as that for power flow calculation. Two case studies prove the effectiveness of the .lambda.$^{Sloss}$ index and the VAR investment algorithm proposed.

  • PDF