• Title/Summary/Keyword: Reactive power compensation

Search Result 297, Processing Time 0.021 seconds

STATCOM System Simulation Used by the PSIM Software (PSIM 소프트웨어에 의한 STATCOM 시스템 시뮬레이션)

  • Lee, Hwa-Su;Kim, Yong-Heon;Lee, Eun-Woong;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • The study for improvement of power qualify is widely performed, because most equipments used semi-conductor are very sensitive for power quality. In this paper, we performed modeling for STATCOM system which developed using SCRs, and suggested the compensation principle of reactive Power by simulations used PSIM software. We will apply this results to 30kVA STATCOM under manufacturing.

  • PDF

Development reactive power compensation system model for power factor (역률제어용 무효전력 보상설비 모델 개발)

  • Choi, Ho-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.423-424
    • /
    • 2015
  • 전압 안정도를 향상 시키고 무효전력을 보상하는 방법 중 하나로 정지형 무효전력보상설비(SVC, Static Var Compensator)를 사용한다. 특히, 전기로(EAF, Electric Arc Furnace) 등 비선형 부하가 주를 이루는 철강 민수 사업자의 부하는 단시간 내에 전류 변화가 급격히 일어나며 큰 전압 변동을 일으키므로 무효전력 보상설비를 적용하여 안정적인 전력을 공급하고 전력 품질을 확보해야 할 필요가 있다. 본 논문에서는 LS-Nikko 동제련 온산 공장에 역률 보상을 목적으로 무효전력을 제어하기 위한 ${\pm}100[MVar]$ SVC 시스템 모델을 소개하고, 그 특성에 대한 이해를 돕고자 한다.

  • PDF

A STUDY ON THE REACTIVE POWER COMPENSATION OF THREE PHASE UNBALANCED LOAD FOR VAR SYSTEM (VAR 시스템에 의한 3 상 불평형 부하의 무효전력 보상에 관한 연구)

  • Jung, Yon-Taek;Seo, Young-Soo;Kim, Young-Bong;Kim, Han-Soo;Lee, Bong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.531-534
    • /
    • 1989
  • In this paper, the way that input voltage and input line current as a control variable is provided as one unit is projected. Till no, have denied with three phase balanced load. But, in that case, total power factor compensation is difficult, for to control each phase at unbalanced load. Therefor, in this paper suggest of the scheme that three phase unbalanced load is controlled by each phase and input total power factor is compensated unit input factor. therefore, in this paper suggest that three phase unbalanced load is controlled and the method in compensation of unit input factor to be attended by unbalanced load. Besides, the object of control is calculating quantity for input voltage and input line current for the point at issuse make to improve of control method at unbalanced load. As a result, control system of each phase could maintain as a unit input total power factor has been state diviation error of 2% with unbalanced load.

  • PDF

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

the power flow control and voltage compensation by 20kVA prototype UPFC (20kVA급 Prototype UPFC의 전력조류제어와 모선전압보상)

  • Jeon, Jin-Hong;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.349-352
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency [1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design, implementation and test results of developed 20kVA level prototype UPFC. It is applied to power system simulator and controls the real and reactive power flow and shunt bus voltage magnitude.

  • PDF

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

The DC-Link voltage compensation of Reactive Power Compensator using Multi-level Inverter (멀티레벨 인버터를 이용한 무효전력보상장치에서의 전압 보상)

  • KIM, H.J.;JEONG, S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.125-126
    • /
    • 2012
  • 무효 전력을 보상하기 위한 장치로 단상 인버터를 이용한 멀티레벨 인버터를 이용할 때 불평형 부하가 아닐 경우에도 각각 직렬 연결된 단상 인버터들 사이에서 DC-Link 불균등 현상이 발생한다. 이 불균등에 대한 원인 및 해결 방법을 제안하였다. 그리고 이 알고리즘을 이용한 시뮬레이션으로 그 가능성을 증명하였다.

  • PDF