• Title/Summary/Keyword: Reactive milling

Search Result 35, Processing Time 0.029 seconds

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Fabrication and Properties of Reactively Hot Pressed HfB2-HfC Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Seong, Young-Hoon;Baek, Seung-Su;Kang, Eul-Son;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • $HfB_2$-HfC composites were prepared by reactive hot pressing using Hf and $B_4C$ at temperatures of 1800 and $1900^{\circ}C$ for 60 min under 32 MPa in an Ar atmosphere. The reaction sequences of the $HfB_2$-HfC composite were studied through series of pressureless heat treatments ranging from 800 to $1600^{\circ}C$. The effect of size reduction of the starting powders on densification was investigated by vibration milling. Fully dense $HfB_2$-HfC composites were obtained by size reduction of the starting powders via vibration milling. The oxidation behaviour of the $HfB_2$-HfC composites at $1500^{\circ}C$ in air showed formation of a non-protective $HfO_2$ scale with linear mass gain. Examination of the mechanical properties showed that particle size reduction via vibration milling also led to improved flexural strength, hardness and fracture toughness.

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Influence of High-energy Milling and Sintering Cycle on Obtaining of TiAl from Elemental Ti and Al Powders

  • Esteban, P.G.;Gordo, E.;Ruiz-Navas, E.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.727-728
    • /
    • 2006
  • The present work studies the influence of high-energy milling (HEM) and sintering cycle of Ti and Al powders on the obtainment of TiAl. This study shows that HEM modifies the diffusion processes during the sintering stage. The samples were obtained by cold uniaxial and isostatic pressing, pre-sintered at different temperatures, and heated up to the sintering temperature. This study also shows the effect of powder additions processed by HEM on the sintering behavior of elemental Ti and Al powders.

  • PDF

The One-bath One-step Dyeing of Nylon/Cotton Blends with Acid Dyes and Mononicotinic acid-triazine type Reactive Dyes (산성염료 및 중성고착형 반응성염료를 이용한 나일론/면 교직물의 1욕 1단 염색)

  • Kim Ji-Yeon;Lee Ki-Poong;Park Hyun-Min;Yoon Nam-Sik;Cho Kwang-Ho
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • Because acid dyes and reactive dyes require acidic condition for adsorption and alkaline condition for fixation respectively, it is difficult to dye nylon/cotton blends in one-bath one-step dyeing method. In this paper we tried to find out the suitable dye and dyeing condition for one-bath one-step dyeing of nylon/cotton blends. MNT type reactive dyes showed higher exhaustion on cotton as compared with MCT type dyes at neutral pH, which means that the MNT type reactive dyes are preferable for one-bath one-step dyeing method. The optimum condition for one-bath one-step dyeing of nylon/cotton blends was found to be pH 7. Wash fastness of fabrics dyed with half-milling type acid dyes was superior to that of fabrics dyed with levelling type acid dyes, when MNT type reactive dyes were used together.

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.