• Title/Summary/Keyword: Reactive flow

Search Result 645, Processing Time 0.033 seconds

Asymmetric Flows for Porous Silicon Electroosmotic Pumps (다공성 실리콘막을 포함한 전기침투 방식 펌프에서의 비대칭적 인 유동)

  • Kim, Dae-Joong;Santiago, Juan G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.703-704
    • /
    • 2008
  • We fabricated and tested porous silicon-based electroosmotic pumps. Compared to other pumping media, porous silicon is beneficial for obtaining comparable flow rates with much lowered electric potential, while maintaining enough mechanical properties. We fabricated porous silicon with two sided-reactive etching processes. We found higher flow rate per electric potential (consistent with previous studies) and we also found asymmetric flow rates for different pumping directions. We plan to utilize this asymmetry for AC pumping applications.

  • PDF

Fundamental study on Inverter-type Series and Shunt Compensator for Transmission System (송전계통의 인버터식 직.병렬 보상기에 관한 기초연구)

  • Han, Byung-Moon;Han, Hoo-Sek
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.425-433
    • /
    • 1999
  • This paper describes a simulation model and a scaled hardware model to analyze the dynamic performance of Unified Power Flow Controller, which can flexibly adjust the active and reactive power flow through the ac transmission line. The design of control system was developed using vector control method. The results of simulation and scaled hardware test show that the developed control system works accurately. And both models are very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

영가 철로 구성된 Flow-Through Column내에서 미생물 처리에 이한 폭발성 물질의 제거 향상

  • 오병택;윤제용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.73-76
    • /
    • 2004
  • Rusted iron could retain activity to redox-sensitive pollutants in batch reactor. Flow-through columns packed with permeable reactive iron filings (Fe$^{0}$ ) between soil and sand layers were used to evaluate the applicability of bio-enhanced iron barriers to treat explosives-contaminated groundwater. One column was bioaugmented with municipal anaerobic sludge to evaluate the enhancement of biodegradation. Military contaminants (RDX, HMX, TNT, 2,4DNT, 2,6DNT), which coexist in soils at military sites, were completely removed in the bioaugmented Fe$^{0}$ layer after 8 months of operation. Overall, this research suggests that Fe$^{0}$ barriers can effectively clean up groundwater contaminated with military explosives, and that treatment efficiency can be enhanced by bioaugmentation.

  • PDF

Evolution of reaction zones in reactive barriers consisting of calcite and glass beads

  • Jeong Gon, Kim;Gwang Man, Lee;Ik Hwan, Go
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.19-22
    • /
    • 2004
  • Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution/ precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between tile solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  • PDF

Reactive Ion Etching of Pt Thin Films (Pt 박막의 반응성 이온식각)

  • 양정승;김민홍;윤의준
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.263-267
    • /
    • 1996
  • Reactive ion etching of Pt thinfilm was studied using $CCl_2F_2$, Ar, and $O_2$ . Etch rate of the Pt increased as the total pressure decreases and the RF power increased, while the flow rate of $CCl_2F_2$ had little effect on the Pt etch rate. Addition of $O_2$ had no effect on Pt etch rate up to 20% $O_2$ Selectivity between Pt and photoresist increased as the pressure decreased and the RF power increased, making it possible to pattern a thicker Pt layer with a thinner photoresist. A maximum etch rate of 300$\AA$/min was obtained at $CCl_2F_2$ flow rate of 20 sccm. RF power of 400 W, and the total pressure of 60mTorr.

  • PDF

Deep RIE(reactive ion etching)를 이용한 가스 유량센서 제작

  • Lee, Yeong-Tae;An, Gang-Ho;Gwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.198-201
    • /
    • 2006
  • In this paper, we fabricated drag force type and pressure difference type gas flow sensor with dry etching technology which used Deep RIE(reactive ion etching) and etching stop technology which used SOI(silicon-on-insulator). we fabricated four kinds of sensor, which are cantilever, paddle type, diaphragm, and diaphragm with orifice type. Both cantilever and paddle type flow sensors have similar sensitivity as 0.03mV/V kPa. Sensitivity of the fabricated diaphragm and diaphragm with orifice type sensor were relatively high as about 3.5mV/V kPa, 1.5mV/V kPa respectively.

  • PDF

Hypersonic Reactive Flow Analysis around Hyperbolic Shaped Ballistic Launcher (Hyperbolic 선두 형상 탄도발사체의 극초음속 반응유동 해석)

  • 정은주;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.98-101
    • /
    • 2003
  • The purpose of this research is to investigate the hypersonic reactive flow around hyperbolic shaped ballistic launcher, A numerical study was carried out to compare with the experimental results of hyperbolic shaped model, which were tested in a free piston shock tunnel, T3 in ANU. Freestream condition was 98% $N_2$, 2% $O_2$, and total enthalpy was 8MJ/kg. Also this paper used 2-temperature and 1-temperature model to show the difference of them.

  • PDF

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

THERMAL INSTABILITY IN REACTIVE VISCOUS PLANE POISEUILLE / COUETTE FLOWS FOR TWO EXTREME THERMAL BOUNDARY CONDITIONS

  • Ajadi, Suraju Olusegun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.73-86
    • /
    • 2009
  • The problem of thermal stability of an exothermic reactive viscous fluid between two parallel walls in the plane Poiseuille and Couette flow configurations is investigated for different thermal boundary conditions. Neglecting reactant consumption, the closed-form solutions obtained from the momentum equation was inserted into the energy equation due to dissipative effect of viscosity. The resulting energy equation was analyzed for criticality using the variational method technique. The problem is characterized by two parameters: the Nusselt number(N) and the dynamic parameter($\Lambda$). We observed that the thermal and dynamical boundary conditions of the wall have led to a significant departure from known results. The influence of the variable pre-exponential factor, due to the numerical exponent m, also give further insight into the behavior of the system and the results expressed graphically and in tabular forms.

  • PDF