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ABSTRACT. The problem of thermal stability of an exothermic reactive viscous fluid between
two parallel walls in the plane Poiseuille and Couette flow configurations is investigated for
different thermal boundary conditions. Neglecting reactant consumption, the closed-form so-
lutions obtained from the momentum equation was inserted into the energy equation due to
dissipative effect of viscosity. The resulting energy equation was analyzed for criticality using
the variational method technique. The problem is characterized by two parameters: the Nus-
selt number(N ) and the dynamic parameter(Λ). We observed that the thermal and dynamical
boundary conditions of the wall have led to a significant departure from known results. The
influence of the variable pre-exponential factor, due to the numerical exponent m, also give fur-
ther insight into the behavior of the system and the results expressed graphically and in tabular
forms.

1. INTRODUCTION

The fully developed two-dimensional plane reactive viscous flow between parallel walls is
still receiving attentions because of its significance to kinematics, the variability of thermody-
namics and transport properties, thereby making it vital and fundamental to all engineering and
applied scientific studies(Laminar combustion, furnaces, lubricants hydrodynamics e.t.c). In
particular, safe storage and transportation of combustible and potentially explosive materials
(such as fuel), the efficient and reliable operation of practical devices, all require an improved
understanding of the combustion process. Generally speaking, most lubricants used in engi-
neering and industrial processes are reactive(hydrocarbon oils, synthetic esters e.t.c), and their
efficiency depends on temperature variations due to thermal and dynamical conditions of the
enclosing walls[Makinde-12]. This study can also find its place in the area of pneumatic con-
veyor system, which makes use of pipes or ducts called transportation lines that carry mixture
of materials and a stream of air.
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The developed plane flow between two flat parallel surfaces is well understood for the case
where one surface is moving parallel to the other (Couette flow); such that flow is driven by
differential tangential motion of enclosing walls[Fang-6]. In a similar way the Poiseuille flow is
often associated with rectilinear pressure driven flows in stationary conduits[Rodia and Osterle-
17].

In the study of thermal ignition (criticality), there are specific criteria which determine spon-
taneous change in behavior [1, 2, 12, 15, 16]. Thermal ignition is a type of instability in which
the combustible at a negligible rate is brought to a condition in which it is reacting at an ap-
preciable rate. In the study of thermal ignition, the neglect of the momentum of the reacting
species is well established. This is because of the assumption that no momentum is created
by the chemical reactions[9]. However, in a reactive viscous flow, it may be very significant
to include the momentum equation of the reactive system to accommodate the flow dynamics.
Since the enclosing wall(s) may be stationary (Poiseuille flow) or subjected to uniform mo-
tion (Couette flow), it would be challenging to investigate the impact of these variations on the
thermal ignition of the system.

Historically, the theory of combustion was developed through studies of simpler models with
additional and often unfounded assumptions. However, in this work, the assumption of con-
stant density approximation characterizes combustion as a low speed phenomenon(small Mach
number) in a chemically reacting mixture which is valid for situations where the hydrodynam-
ical effects play a secondary role with respect to the reactive and diffusive effect[5, 18]. It is
often employed as a substantially simplifying assumption to decouple the momentum equation
from the energy equation[12, 13]. In addition, the assumption of low Mach number provided
that the heat release is sufficiently weak and with this, the hydrodynamic flow field decouples
from the heat equation to leading order.

Okoya and Ajadi[16] examined the thermal stability of two models, whose thermal conduc-
tivity is a function of temperature. They showed the way in which thermal explosion is affected
by boundary conditions and other parameters. Furthermore, Okoya[14] considered the thermal
stability for a reactive viscous, Newtonian flow in a slab for a plane Poiseuille flow. It was
observed that criticality parameter and the excess maximum temperature are monotonically
increasing function of the non-Newtonian coefficient.

More recently, Makinde[11] studied the steady state solutions for a strongly exothermic vis-
cous reactive flows through channels with sliding wall. They revealed accurately, the steady
state thermal criticality conditions for viscous reactive effectiveness using the perturbation
summation and improvement technique.

Motivated by the above, we considered thermal stability behaviors of an exothermic com-
bustible material between parallel channels based on the Couette and Poiseuille flows con-
figurations. Parametric analysis was conducted using the Nusselt number(N ), the dynamic
parameter(Λ) and the numerical index m(due to the temperature dependent pre-exponential
factor), on the thermal ignition behavior of the system and the results expressed graphically
and in tabular forms.
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2. GOVERNING EQUATIONS

We consider a reactive system based on a one-step reaction mechanism of the form,

F + O
wi−→ P, wi = A(T )[F ][O], (2.1)

enclosed between two parallel plates, which are hydrodynamically and thermally developed
uni-directional flow in the x-direction. In the reaction (2.1), F and [F ] represent the fuel and
fuel concentrations respectively, O and [O] represent the oxidant and oxidant concentrations
respectively, wi is the reaction rates, A(T ) is the variable pre-exponential factor.

Assuming negligible reactant consumption, the steady state governing continuity, momen-
tum and energy equations are:

∂u

∂x
+

∂v

∂y
= 0, (2.2)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −dP

dx
+ µ

∂2u

∂y2
, (2.3)

and
d2T

dy2
+

QC0A(T )
K

exp
(−E

RT

)
+

µ

K

(
du

dy

)2

= 0. (2.4)

The appropriate boundary conditions for the momentum and energy equations are,

u(0) = 0, u(a) = 0, (2.5)

u(0) = 0, u(a) = Vp, (2.6)

dT

dy
+

H

K
(T − T0) = 0, y = 0, and T = T0, y = a, (2.7)

where T is the absolute temperature variable, dP
dx is the pressure gradient(decreasing), T0 is

the wall temperature, K is the thermal conductivity of the combustible material, Q(T ) is the
heat release, A is the pre-exponential factor, E is the activation energy, R is the universal
gas constant, a is the distance between the plates and C0 is the initial concentration of the
reactant, H is the heat transfer coefficient, µ is the combustible material dynamic viscosity
coefficients, Vp is the velocity of the upper plate, u and v are the velocity along and across the
channel respectively, ρ is the constant density and the ratio H

K is the Nusselt number(N ). N
is a dimensionless version of the temperature gradient at the surface between the fluid and the
solid, and it thus provides a measure of the convection occurring from the surface. Equations
(2.5) and (2.6) represent the Poiseuille and Couette flows respectively. Condition (2.7) at
y = 0 is the general Newtonian exchange of heat at the wall surface, while condition (2.7) at
y = a corresponds to the perfect heat transfer on the boundary. In the first part of (2.7), the
two extreme values for the Nusselt number N have been considered: N = 0 corresponds to
adiabatic heat transfer(H = 0), while N = ∞ refers to the perfect heat transfer(K = 0) on the
boundary[2, 7, 16].
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Assuming that the velocity across the channel is space invariant(dv
dy =0), we can non-dimensionalize

equations (2.2) - (2.6) using the variables,

θ =
E(T − T0)

RT 2
0

, y′ =
y

a
, x′ =

x

a
, W =

u

Vp
. (2.8)

By dropping primes, the dimensionless continuity, momentum and energy equations become

∂W

∂x
= 0, ⇒ W = W (y), (2.9)

d2W

dy2
− α

dW

dy
+ G = 0, (2.10)

and
d2θ

dy2
+ δ

[
(1 + εθ)m exp

(
θ

1 + εθ

)
+ β

(
dW

dy

)2
]

= 0. (2.11)

The appropriate boundary conditions are as follows:

W (0) = 0, W (1) = Λ = 0 =⇒ Poiseuille flow, (2.12)

W (0) = 0, W (1) = Λ = 1 =⇒ Couette flow, (2.13)

∂θ

∂y

∣∣∣∣
y=0

= 0, θ(1) = 0, =⇒ N = 0, (2.14)

θ(0) = 0, θ(1) = 0 =⇒ N →∞, (2.15)

where ε(dimensionless activation energy), α(heat convection), Λ = u(a)
Vp

(plate motion parame-
ter), β(viscous dissipation), δ(Frank-Kamenetskii parameter) are given by

ε =
RT0

E
,α =

ρaVp

µ
, G =

a2

µVp

dP

dx
, β =

µV 2
p

QC0A0a2
, and δ =

QEC0A0T
m−2
0 a2

KR exp( E
RT0

)
.

3. METHODS OF SOLUTIONS

3.1. Momentum Equations(closed-form). The momentum equation (2.10) and boundary
conditions (2.12) and (2.13), after integration, lead to closed form solutions of the forms;

W (y) =
(

Λ +
G

2

)
y − G

2
y2, α = 0 (3.1)

W (y) = G
y

α
+

Λα−G

α(eα − 1)
(eαy − 1), α 6= 0, (3.2)

where Λ = 0 and Λ = 1 correspond to the Poiseuille and Couette flow respectively. The
graphical expressions of the solutions (3.1) and (3.2), shown in Figures 9 and 10 respectively.
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3.2. Energy Equations(Variational method). In a simplified system, the energy equation for
a one-step reaction system is often amenable to closed-form solution. However, the inclusion
of the momentum equation in this consideration makes this unrealistic. We are motivated to
use the variational technique[1, 2, 13], which is based on the maximum principle and often
applicable to problems of these types. Thus, the mathematical criteria for maximum critical
ignition points is

dδ

dθ
= 0,

d2δ

dθ2
< 0, (3.3)

from which the calculation of maximum temperature (θcr) and the corresponding critical pa-
rameter (δcr) are obtained. And beyond θcr and δcr, we we have the onset of thermal instability.
Before transforming the problem to a variational form, for simplicity, we let

f(θ) = (1 + εθ)m exp
(

θ

1 + εθ

)
+ β

(
dW

dy

)2

, (3.4)

F (θ) =
∫

f(θ)dθ =
∫ [

(1 + εθ)m exp
(

θ

1 + εθ

)
+ β

(
dW

dy

)2
]

dθ.

Consider the Hamiltonian for (2.11)-(2.15) to be

Hδ(θ) =
∫

D

(
1
2
|∇θ|2 − δF (θ)

)
dV, (3.5)

and substituting θ =
∑

Akθk such that Hδ = Hδ(A1, A2, · · ·An) and A1, A2, · · ·An are the
solutions of the system. The variational principle suggests that A1, A2,...An be determined as
the solution of the system

∂Hδ

∂Ak
= 0, k = 1, 2, ..n, (3.6)

giving an approximate solution θ =
∑

Akθk corresponding to the chosen δ and the more the
number of Ak, the better the approximation. In reality and for simplicity, the number of Ak

are often two(A1, B1 and A2, B2). The condition determining criticality is according to the
implicit function theorem is

∂2Hδ

∂Ak∂Al
= 0, k, l = 1, 2, .., n. (3.7)

The domain of Hδ is restricted to those functions satisfying the boundary conditions (2.14); an
example of such a function is

θ(ρ) = A1 cos(
πy

2
) + B1 cos(

3πy

2
). (3.8)

Hence,

Hδ(A1, B1) =
1
8
π2(uA2

1 + 6A1B1v + 9B2
1w)− δ

∫ 1

0
ρjG(θ)dρ, (3.9)
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where

u =

1∫

0

ρj sin2
(πρ

2

)
dρ =

{
1
2 , j = 0,

1
2(j+1) + 1

π2 j = 1, 2,

v =

1∫

0

ρj sin
(πρ

2

)
sin

(
3πρ

2

)
dρ =





0, j = 0,
−1
π2 , j = 1,
−5
4 , j = 2,

(3.10)

w =

1∫

0

ρj sin2

(
3πρ

2

)
dρ =

{
1
2 , j = 0,

1
2(j+1) + 1

9π2 , j = 1, 2.

The simultaneous equations to be solved for Ak, Bk (Ak + Bk = θcr) and δcr, are;

∂Hδ

∂Ak
= 0,

∂Hδ

∂Bk
= 0, (3.11)

and (
∂2Hδ

∂A2
k

)(
∂2Hδ

∂B2
k

)
=

(
∂2Hδ

∂Ak∂Bk

)
. (3.12)

Substituting (3.8) - (3.10) into equations (3.11) - (3.12), A1, B1 (A1 + B1=θcr) and δcr may
be determined from the numerical solutions of the simultaneous equations,

1
4
π2(uAk + 3vBk)− δ

∂

∂Ak




1∫

0

F (θ)dy


 = 0, (3.13)

3
4
π2(vAk + 3wBk)− δ

∂

∂Bk




1∫

0

F (θ))dy


 = 0, (3.14)

(
π2u
4 − δ ∂2

∂A2
k

1∫
0

F (θ)dy

)
×

(
9π2w

4 − δ ∂2

∂B2
k

1∫
0

F (θ)dy

)

=
(

3π2v
4 − δ ∂2

∂Ak∂Bk

1∫
0

F (θ)dy

)2

.

(3.15)

Similarly, the boundary equation (2.4) is satisfied by,

θ(ρ) = A2 sin(πρ) + B2 sin(2πρ), (3.16)

where the constants A2, B2 (A2 + B2=θcr) and δcr are constants to be calculated. Inserting
equation (3.16) into (3.5), we obtain

Hδ(A2, B2) = π2(uA2
2 + 2vA2B2 + 4wB2

2)− δ

∫ 1

0
ρjF (θ)dρ, (3.17)
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u =

1∫

0

ρj cos2(πρ)dρ =





1
2 , j = 0,
1
4 , j = 1,
1
6 + 1

4π2 , j = 2,

v =

1∫

0

ρj cos(πρ) cos(2πρ)dρ =

{
0, j = 0,
−10
9π2 , j = 1, 2,

(3.18)

w =

1∫

0

ρj cos2(2πρ)dρ =





1
2 , j = 0,
1
4 , j = 1,
1
6 + 1

16π2,
j = 2.

Substituting (3.16) and (3.17) into equations (3.11) - (3.12), A2, B2 and δcr can be obtained
from

π2(2uA2 + 2vB2)− δ
∂

∂A2




1∫

0

F (θ)dy


 = 0, (3.19)

π2(2vA2 + 8wB2)− δ
∂

∂B2




1∫

0

F (θ))dy


 = 0, (3.20)

(
2uπ2 − δ ∂2

∂A2
2

1∫
0

F (θ)dy

)
×

(
8π2w − δ ∂2

∂B2
2

1∫
0

F (θ)dy

)

=
(

2π2v − δ ∂2

∂A2∂B2

1∫
0

F (θ)dy

)2

.

(3.21)

TABLE 1. Variation of δcr and θcr vs β for G = 10 for N = 0 and ε = 0.

Λ = 0, α = 0 Λ = 0, α = 1 Λ = 1, α = 0 Λ = 1, α = 1
β δcr θcr δcr θcr δcr θcr δcr θcr

0.0 0.8784 1.1672 0.8784 1.1672 0.8784 1.1672 0.8784 1.1672
0.5 0.7605 1.3234 0.4532 1.9247 0.6770 1.4429 0.3986 2.0899
1.0 0.6788 1.4462 0.3314 2.2765 0.5673 1.6295 0.283 2.4796
1.5 0.6177 1.5481 0.2679 2.5136 0.4951 1.7728 0.2254 2.7363
2.0 0.5694 1.6356 0.2277 2.6939 0.4429 1.8898 .1897 2.9294
2.5 0.5302 1.7124 0.1995 2.8401 0.4029 1.9892 .165 3.0847
5.0 0.405 2.0011 0.1284 3.3241 0.2877 2.3422 .104 3.5934
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TABLE 2. Variation of δcr and θcr vs β for G = 10 for N = ∞ and ε = 0.

Λ = 0, α = 0 Λ = 0, α = 1 Λ = 1, α = 0 Λ = 1, α = 1
β δcr θcr δcr θcr δcr θcr δcr θcr

0.0 7.0187 1.1954 7.0187 1.1954 7.0187 1.1954 7.0187 1.1954
0.5 5.8944 1.3936 4.1595 1.7718 5.0461 1.537 4.0115 1.9809
1.0 5.1642 1.5431 3.1574 2.0727 4.0966 1.7516 3.007 2.3715
1.5 4.6379 1.6642 2.6035 2.2824 3.5071 1.9109 2.4619 2.6385
2.0 4.2344 1.7665 2.2414 2.4446 3.0954 2.0387 2.1089 2.8429
2.5 3.9119 1.8554 1.982 2.5776 2.7873 2.1457 1.858 3.009
5.0 2.9188 2.1827 1.3077 3.025 1.9325 2.5182 1.2129 3.5612

β = {0, 1, 2, 4, 8, 10}
β

FIGURE 1. δcr vs ε for G = 10,N = 0,α = 0,m = 0.5

4. NUMERICAL SOLUTIONS AND RESULTS

The systems of equations (3.13)-(3.15) and (3.19)-(3.21) were solved simultaneously using
the Mathematica 6 symbolic package by an interactive procedure. The definite integrals have
been approximated by the Simpson’s numerical integration scheme. To test the accuracy of the
procedure, we compare our results with existing exact solutions in literature. For example, the
particular case of β = ε = m = 0, we observed from Tables 1 - 2, that in our computation,
δcr = 0.8784, while the existing exact solution δcr = 0.8785[7, 18]. In addition, we obtained
θcr = 1.1672, while the existing exact solution θcr = 1.1870. This shows that (δcr) is about
99.9%, while the critical temperature (θcr) is 98.3% close to exact solution. The transcendental
appearance of θ in the Arrhenius expression may be responsible for the less accuracy of θcr.
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β
β = {0, 1, 2, 4, 8, 10}

FIGURE 2. δcr vs ε, for m = −2,α = 0,G = 10,Λ = 0

β

β = {0, 1, 2, 4, 8, 10}

FIGURE 3. δcr vs ε,for Λ = 1,G = 10,N = ∞, α = 0

Tables 1− 2 show that the Frank-Kamenetskii parameter (δcr) is monotonically decreasing
with respect to the dissipation parameter(β), while the maximum temperature (θcr) is mono-
tonically increasing with respect to β for N = 0 and N = ∞. Furthermore, the Couette flow
configuration Λ = 1 attains ignition faster at a higher maximum temperature, when compared
with the Poiseuille configuration Λ = 0. This may be due to additional frictional heat re-
sulting from fluid/plate contact. In the adiabatic-Dirichlet configuration (N = 0), δcr and θcr

are lower limits of the corresponding Dirichlet-Dirichlet(N = ∞) configuration, thus making
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ε = {0, .02, .04, .06, .08, .1}
ε

FIGURE 4. δcr vs β for N = ∞,α = 0,G = 10,Λ = 0.

β = {0, 1, 2, 4, 8, 10}
β

FIGURE 5. δcr vs ε for G = 10,α = 1,N = 0,m = −2

thermal ignition faster in the previous than the latter. This may be due to the poor heat transfer
due to an adiabatic lower wall(N = 0), as compared with the perfect heat release(N = ∞).
Thus, the dissipation parameter, Couette flow and the adiabatic wall configuration lead to early
occurrence of thermal ignition and would be desirable in applications requiring quick combus-
tion.

The global parametric analysis of the system and the influence of the pre-exponential factor
is made possible if the activation energy parameter is assumed different from zero (ε 6= 0).
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ε = {0, .02, .04, .06, .08, .1}

ε

FIGURE 6. θcr vs β, G = 10,N = ∞,Λ = α = 1.

β = {0, 1, 2, 4, 8, 10}

β

FIGURE 7. θcr vs ε for Λ = 1, m = 0.5,G = 10,α = 1

Figs. 1 and 5 show the influence of Λ on the variation of δcr with respect to ε for α = 0 and
α = 1 respectively for some β. In both cases, we observed that irrespective of the type of
reaction(m), thermal ignition is faster in the Couette(Λ = 1) than the Poiseuille(Λ = 0) flow
configuration. Figs. 2 and 8 show the influence of N on the variation of δcr and θcr with respect
to ε for α = 0 and α = 1 respectively for some β. In Fig. 2, the case N = 0 shows that δcr is
of a lower limit when compared with N = ∞. Fig. 8, shows that the maximum temperature
θcr for N = 0 are also of lower than the case N = ∞ for some β. The behavior of δcr with
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β = {0, 1, 2, 4, 8, 10}

β

FIGURE 8. θcr vs ε for G = 10, m = −2,Λ = 0,α = 1

Λ = {0, 1, 2, 3, 4}

FIGURE 9. W (y) vs y for α = 0, G = 10.

respect to ε for two types of reactions: the sensitized(m = −2) and Bimolecular(m = 0.5) is
shown in Fig. 3. Although, the difference is insignificant, δcr and θcr for the bimolecular case
are lower than the sensitized case. This behavior is also observed for the ignition time in the
homogeneous system(Ajadi and Okoya[4]). Fig. 4. shows that for the poiseuille flow(Λ = 0),
δcr is a decreasing function of β and that the case m = 0.5 are higher in values than the case of
m = −2 for some ε. Fig. 7 shows the profiles of θcr for the Couette flow configuration(Λ = 1)
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Λ = {0, 1, 2, 3, 4}

FIGURE 10. W (y) vs y for α = 3, G = 10.

for N = 0 and N = ∞ for some β. As stated earlier, θcr increases with β, while the adiabatic
case(N = 0) is an upper limit of the Dirichlet case(N = ∞), which converges as β increases.

5. CONCLUSION

The study examined the contributions of wall dynamic and thermal conditions on the thermal
ignition behavior of a one-step reaction system. It was shown that the Couette flow configu-
ration leads to early occurrence of thermal ignition at a higher temperature than the Poiseuille
flow. For the thermal conditions, adiabatic wall condition allows for early occurrence of igni-
tion than the Dirichlet condition. In addition, viscous dissipation and variable pre-exponential
have also lead to a departure from known results. This study is extremely important in the
industries especially for safety and fluid effectiveness purposes among others.
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