• Title/Summary/Keyword: Reactive agent

Search Result 419, Processing Time 0.033 seconds

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

Antioxidant, Antiaging and Antimicrobial Effects of Ethanolic Extract and Ethyl Acetate Fraction from Eclipta prostrata (한련초 에탄올 추출물과 에틸아세테이트 분획물의 항산화, 항노화 및 항균 효과)

  • Lee, Sang Lae;Song, Ba Reum;Shin, Hyuk Soo;Lee, Yun Ju;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • An annual plant, Eclipta prostrata (Linn) is a member of the Asteraceae plant family and inhabited in tropical or subtropical regions of the world. Through many previous researches, E. prostrata has been extensively studied for its hepatoprotective effect, antivenom potential against viper venom, antioxidant, hair-growth, wound-healing efficacy and so on. In this study, for better understanding of the potential of E. prostrata as skin protectant, we conducted the experiments evaluating the antioxidant and antiaging efficacy. To this end, 50% ethanolic extract of E. prostrata and its ethyl acetate fraction were prepared and investigated. For the evaluation of antioxidant capacity of the samples, $FSC_{50}$ and $OSC_{50}$ were estimated. As a result, $OSC_{50}$ of ethyl acetate fraction was 2.7 times superior to $OSC_{50}$ of L-ascorbic acid, a well known antioxidant agent. Futhermore E. prostrata showed notable reactive oxygen species (ROS) scavenging effect and protective effect against $H_2O_2$ in the celluar level as well. Especially, in the $^1O_2$ induced hemolysis test, $64{\mu}g/mL$ of ethyl acetate fraction showed greater than 6 times increased retardation effect compare to control which means E. prostrata has remarkable antioxidant capacity. To validate the antiaging effect of the samples, we conducted elastase inhibition assay using elastase solution extracted from human skin fibroblasts, Hs68. As a result, $16{\mu}g/mL$ of each sample showed 6.8% and 14.0% of elastase inhibition respectively. Finally, antimicrobial activity of E. prostrata was assessed to validate the possibility as alternative preservative. From the result, ethyl acetate fraction showed oustanding antimicrobial activity as of methyl paraben, a well known chemical preservative. In conclusion, these results suggest that E. prostrata can be used as natural skin protectant or preservative as natural ingredient in food or cosmetics industry.

In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress (알코올성 산화적 손상에 대한 발효울금의 간세포 보호 효과)

  • Sung, Heami;Lee, Yoo-Hyun;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.812-818
    • /
    • 2016
  • Protective effects of fermented Curcuma longa L. (CL) against alcoholic liver damage were investigated in HepG2/2E1 cells. Fermented CL was extracted by cold water (FCC), hot water, 80% ethanol, and methanol. Of the four extracts, the strongest hepatoprotective effect against ethanol-induced oxidative stress was observed in FCC. Pretreatment with FCC also reduced intracellular reactive oxygen species formation compared to ethanol-alone treated cells. FCC also enhanced catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and superoxide dismutase, and non-enzymatic antioxidative activities such as glutathione compared to alcohol-treated HepG2/2E1 cells. Our findings suggest that FCC might be considered as a useful agent in the prevention of liver damage induced by oxidative stress by increasing the antioxidant defense mechanism.

Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells (사람피부세포에서 카렌둘라 꽃 추출물의 항산화 및 산화적 스트레스에 대한 세포보호효과)

  • Xuan, Song Hua;Kim, Ga Yoon;Yu, Ji Yeon;Kim, Jee Won;Yang, Ye Rim;Jeon, Young Hee;Jeong, Yoon Ju;Kim, A Rang;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.620-626
    • /
    • 2016
  • In this study, we investigated the total phenolic and flavonoid contents, antioxidant activity and cellular protective effects against oxidative stress on human skin cells in 50% ethanol extract and its fractions of Calendula officinalis (C. officinalis) flowers. We measured the antioxidant effects of 50% ethanol extract and its fractions of C. officinalis flowers on the free radical scavenging activity ($FSC_{50}$), the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) and the inhibition of intracellular ROS generation in human skin cells. These results showed that the antioxidant effect of the ethyl acetate and aglycone fraction was more than the 50% ethanol extract of C. officinalis flowers. We also investigated the cellular protective activity and the results showed that treatment of the ethyl acetate fraction ($0.05-3.13{\mu}g/mL$) protects human skin cells in a concentration-dependent manner when the skin cell damages were induced by treating them with $H_2O_2$. In addition, the aglycone fraction ($1.56-3.13{\mu}g/mL$) shows cellular protective effects on the UV-induced cell damages in a dose-dependent manner. These results suggest that the fractions of C. officinalis flowers can function as a natural antioxidant agent of cosmetics in human skin cells exposed to oxidative stress by ROS scavenging effects.

Antioxidant Activity and Whitening Effect of Cedrela sinensis A. Juss Shoots Extracts (참죽나무 새순 추출물의 항산화 활성과 미백 작용에 관한 연구)

  • Kim, Sun-Young;Kim, Chae-Rin;Kim, Hyun-Min;Kong, Myung;Lee, Ji-Hee;Lee, Hyun-Jun;Lim, Myoung-Sun;Jo, Na-Rae;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.3
    • /
    • pp.175-182
    • /
    • 2010
  • In this study, the antioxidative effects, inhibitory effects on tyrosinase of Cedrela sinensis extracts were investigated. The ethyl acetate fraction of extract ($3.54\;{\mu}g/mL$) and aglycone fraction of extract ($2.15\;{\mu}g/mL$) showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$) than the activity of (+)-$\alpha$-tocopherol ($8.98\;{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of Cedrela sinensis extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extract ($0.15\;{\mu}g/mL$) and aglycone fraction of extract ($0.12\;{\mu}g/mL$) showed 10 times more excellent ROS scavenging activity than activity of L-ascorbic acid ($1.50\;{\mu}g/mL$). The protective effects of fractions of Cedrela sinensis on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extract and aglycone fraction of extracts suppressed photohemolysis in a concentration dependent manner ($5{\sim}25\;{\mu}g/mL$). The inhibitory effect of Cedrela sinensis extracts on tyrosinase was investigated to assess their whitening efficacy. Inhibitory effects ($IC_{50}$) on tyrosinase were determined with ethyl acetate fraction of Cedrela sinensis extract ($48.00\;{\mu}g/mL$) and aglycone fraction of extract ($5.88\;{\mu}g/mL$). The aglycone fraction showed 40 times more remarkable tyrosinase inhibitory effect than whitening agent, arbutin ($226.88\;{\mu}g/mL$) These results indicate that fractions of Cedrela sinensis can be used as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. The fractions of Cedrela sinensis can be applicable to new functional cosmetics for antioxidant and whitening.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Antioxidant and Cellular Protective Effects of Moringa oleifera Leaves Extract (드럼스틱 잎 추출물의 항산화 및 세포보호 효과)

  • Xuan, Song Hua;Kim, A Rang;Jeong, Yoon Ju;Lee, Nan Hee;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.217-226
    • /
    • 2016
  • In this study, we investigated the antioxidative and cellular protective effects on HaCaT cells and erythrocytes of Moringa oleifera (M. oleifera) leaves extract and its fractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of M. oleifera leaves. The free radical scavenging activity ($FSC_{50}$) of the extract and fractions of M. oleifera leaves were in the following order: 50% ethanol extract ($77.10{\mu}g/mL$) < ethyl acetate fraction ($20.63{\mu}g/mL$) < aglycone fraction ($17.00{\mu}g/mL$) by using the 1, 1-diphenyl-2-picrylhydrazyl. In $Fe^{3+}-EDTA/H_2O_2$ system using the luminol, reactive oxygen species (ROS) scavenging activities (total antioxidant capacity, $OSC_{50}$) of aglycone fraction ($OSC_{50}=0.63{\mu}g/mL$) was the strongest among all extracts, which was much higher than L-ascorbic acid ($1.50{\mu}g/mL$). In the $^1O_2$-induced cellular damage of erythrocytes, the cellular protective effects of 50% ethanol extract (${\tau}_{50}=46.9min$) and aglycone fraction (${\tau}_{50}=122.1min$) were higher than (+)-${\alpha}$-tocopherol (${\tau}_{50}=37.7min$), known as a lipophilic antioxidant at $10{\mu}g/mL$. After cell damage induced by $400mJ/cm^2$ UVB irradiation, the cellular protective effects of ethyl acetate and aglycone fraction of M. oleifera leaves extract were showed on the concentration from 0.20 to $1.56{\mu}g/mL$. These results suggest that M. oleifera leaves extract and its fractions can function as a natural antioxidant agent in cosmetics on skin exposed to UV radiation by protecting cellular membrane against ROS.

Comparative Study on Antioxidative Activity of Glycyrrhiza uralensis and Glycyrrhiza glabra Extracts by Country of Origin (원산지별 감초 추출물의 항산화 활성 비교 연구)

  • Han, Saet Byeol;Gu, Hyun A;Kim, Su Ji;Kim, Hye Jin;Kwon, Soon Sik;Kim, Hae Soo;Jeon, So Ha;Hwang, Jun Pil;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this work, comparative study on antioxidative activities of extracts from Glycyrrhiza uralensis (G. uralensis) produced in Korea and in China and Glycyrrhiza glabra (G. glabra) produced in Uzbekistan was conducted. Among three origins, 50% ethanol extracts (21.15 ${\mu}g/mL$), ethyl acetate fraction (29.15 ${\mu}g/mL$) and aglycone fraction (3.26 ${\mu}g/mL$) of G. uralensis from Korea showed the higher free radical (1,1-phenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$) than extracts from other origins. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of extracts from three origins on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using luminol-dependent chemiluminescence assay 50% ethanol extract (1.00 ${\mu}g/mL$) and ethyl acetate fraction (0.34 ${\mu}g/mL$) of G. uralensis from China showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of G. uralensis and G. glabra extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. 50% ethanol extract and aglycone fraction of G. uralensis and G. glabra extracts from three origins showed cellular protective effects in a concentration dependent manner (5 ~ 50 ${\mu}g/mL$). Aglycone fraction of G. uralensis from Korea (${\tau}_{50}$ = 847.4 min)especially showed cellular protective effects four times higher than that from China (${\tau}_{50}$ = 194.3 min). These results indicate that G. uralensis and G. glabra extracts, which have been used as whitening agent, could be applicable to functional cosmetic ingredient as a natural antioxidant. Judging from the prominent cellular protecitve effects, it is concluded that G. uralensis and G. glabra extracts can protect the skin from $^1O_2$ and various ROS induced by UV.

Antioxidative and Antibacterial Activities of Artemisia princeps Pampanini Extracts (사자발쑥 추출물의 항산화 및 항균 활성)

  • Yang, Hyun Gab;Kim, Hye Jin;Kim, Hae Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.250-260
    • /
    • 2012
  • In the present study, the antioxidative and antibacterial activities of Artemisia princeps Pampanini (A. princeps Pamp.) extract were investigated. The ethyl acetate fraction of A. princeps Pamp. showed the most prominent free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}=12.27{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of A. princeps Pamp. extract on $Fe^{3+}-EDTA/H_2O_2$ systems were investigated using a luminol-dependent chemiluminescence assay. The ethyl acetate fraction of the extract ($OSC_{50}=0.33{\mu}g/mL$) had a 5 times greater ROS scavenging activity than L-ascorbic acid ($1.50{\mu}g/mL$), known as a water soluble antioxidant. The cellular protective effects of fractions of A. princeps Pamp. on the rose-bengal sensitized photohemolysis of human erythrocytes were examined. The aglycone fraction of extracts suppressed photohemolysis in a concentration dependent manner. The inhibitory effects of A. princeps Pamp. extract on tyrosinase were investigated to assess their whitening efficiency. The ethyl acetate fraction demonstrated a 7 times higher tyrosinase inhibitory effect ($IC_{50}=29.20{\mu}g/mL$) than albutin, known as a whitening agent. The antibacterial activity of ethyl acetate fractions against various normal skin flora were measured. The results showed that the antibacterial activity of the fraction was the highest on Staphylococcus aureus, Bacillus subtilis, and Propionibacterium acnes. Antioxidant substances were isolated and purified from the ethyl acetate fractions. Eupatilin and jaceosidin were identified. These results indicate that the extract/fractions of A. princeps Pamp. can function as antioxidant and/or antibacterial agents for the skin.