• 제목/요약/키워드: Reactive Oxygen Species Stress

검색결과 1,013건 처리시간 0.027초

Oxidative Stress and Antioxidant Defences in the Tasar Silkworm Antheraea mylitta D: Challenged with Nosema Species

  • Jena, Karmabeer;Pandey, Jay Prakash;Sinha, Ajit Kumar
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제28권2호
    • /
    • pp.85-91
    • /
    • 2014
  • This study was designed to find out the effect of Nosema spore on oxidative damages and antioxidant defence in the midgut of tasar silkworm Antheraea mylitta. Higher level of lipid peroxidation (LPX) and total hydroperoxides indicate the resultant oxidative stress in the Nosema exposed specimen. Increased superoxide dismutase (SOD) suggests activation of physiological mechanism to scavenge the superoxide radical produced during Nosema infection. Higher activities of catalase and glutathione-S-tranferase on $18^{th}$ d indicate adaptive behaviour of the tissue against oxyradicals. The results suggest that Nosema infection is involved in altering the active oxygen metabolism by modulating LPX and reactive oxygen species (ROS), which is indicative of pebrine disease disorder.

Ingestion of Polystyrene Microplastics Acutely Induces Oxidative Stress in the Marine Medaka Oryzias javanicus

  • Nam, Sang-Eun;Jung, Jee-Hyun;Rhee, Jae-Sung
    • 한국해양생명과학회지
    • /
    • 제6권1호
    • /
    • pp.31-37
    • /
    • 2021
  • Larvae from the marine medaka fish Oryzias javanicus were exposed with polystyrene microplastics (MPs) for 24 h. Exposure to waterborne fluorescent MPs showed clear ingestion and egestion in feces. Under constant MPs, the concentration of dissolved oxygen significantly decreased in 24 h compared to the control. Significant intracellular reactive oxygen species and malondialdehyde contents were detected in larvae, indicating oxidative stress and lipid peroxidation. Significant elevations in mRNA expressions of heat shock protein 70 and antioxidant defense system genes (glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) were measured with increases in enzymatic activity of oxidative stress-related proteins. Taken together, the alterations to the molecular and biochemical components suggested that waterborne MPs had an oxidative stress effect on marine medaka larvae.

Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation

  • Pasqualotto, Fabio F.;Sharma, Rakesh K.;Nelson, David R.;Thomas, Jr, Anthony J.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2000년도 제39차 춘계 학술대회
    • /
    • pp.37-42
    • /
    • 2000
  • Objective: To determine whether particular semen characteristics in various clinical diagnoses of infertility are associated with high oxidative stress and whether any group of infertile men is more likely to have high seminal oxidative stress. Reactive oxygen species (ROS) play an important role in sperm physiological functions, but elevated levels of ROS or oxidative stress are related to male infertility. Design: Measurement of sperm concentration, motility, morphology, seminal ROS, and total antioxidant capacity (TAC) in patients seeking infertility treatment and controls. Setting: Male infertility clinic of a tertiary care center. Patient(s): One hundred sixty-seven infertile patients and 19 controls. Intervention(s): None. Main Outcome Measure(s): Semen characteristics, seminal ROS, and TAC in samples from patients with various clinical diagnoses and controls. Result(s): Fifteen patients (9.0%) were Endtz positive and 152(91.0%) Endtz negative. Sperm concentration, motility, and morphology were significantly reduced in all groups compared with the controls (P = .02), except in varicocele associated With infection group. Mean (${\pm}$SD) ROS levels in patient groups ranged from 2.2 ${\pm}$ 0.13 to 3.2 ${\pm}$ 0.35, signilicantly higher than controls (1.3 ${\pm}$ 0.3; P<.005). Patient groups had a significantly lower mean (${\pm}$SD) TAC from 1014.75 ${\pm}$ 79.22 to 1173.05 ${\pm}$ 58.07 than controls (1653 ${\pm}$ 115.28, P<.001), except ill the vaseclony reversal group (1532.02 ${\pm}$ 74.24). Sperm concentration was negatively correlated with ROS both overall and within all groups (P${\leq}$.007), with the exception of idiopathic infertility. Conclusion(s): Irrespective of the clinical diagnosis and semen characteristics, the presence of seminal oxidative stress in infertile men suggests its role in the pathophysiology of infertility. Medical or surgical treatments for infertility in these men should include strategies to reduce oxidative stress.

  • PDF

Protective role of Populus tomentiglandulosa against hydrogen peroxide-induced oxidative stress in SH-SY5Y neuronal cells

  • Kwon, Yu Ri;Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.357-363
    • /
    • 2020
  • Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is known as an etiology of neurodegenerative diseases. Populus tomentiglandulosa (PT), a member of the Salicaceae family, is widely grown in Korea and has been reported to exert protective effects on cerebral ischemia by attenuating of oxidative stress and neuronal damage. In the present study, we investigated the antioxidant activity and neuroprotective effects of an ethanol extract and four fractions [n-butanol, ethyl acetate (EtOAc), chloroform, and n-hexane] of PT under in vitro and cellular systems. The extract and four fractions of PT showed 1,1-diphenyl-2-picrylhydrazyl (DPPH), •OH, and O2- radical scavenging activities in a dose-dependent manner. In particular, the EtOAc fraction of PT had the strongest DPPH, •OH, and O2- radical scavenging activities among the extract and other fractions. Therefore, we further investigated the neuroprotective effect of the EtOAc fraction of PT against oxidative stress in H2O2-induced SH-SY5Y cells. Treatment with H2O2 significantly decreased cell viability and lactate dehydrogenase (LDH) release, and it also increased the ROS levels compared to the normal group. However, treatment with the EtOAc fraction of PT significantly increased cell viability. Moreover, the EtOAc fraction of PT-treated group significantly suppressed ROS production and LDH release compared to the H2O2-induced control group. In conclusion, our findings indicated that PT had in vitro antioxidant activity and neuroprotective effects against oxidative stress. Therefore, PT could be used as a natural agent for protection against oxidative stress.

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

Effect of Polyopes lancifolia Extract on Oxidative Stress in Human Umbilical Vein Endothelial Cells Induced by High Glucose

  • Min, Seong Won;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2013
  • The protective effect of Polyopes lancifolia extract on high glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs). High concentration of glucose (30 mM) treatment induced HUVECs cell death, but Polyopes lancifolia extract, at concentrations of 25, 50, and $100{\mu}g/mL$, protected cells from high glucose-induced damage. Furthermore, thiobarbituric acid reactive substances, intracellular reactive oxygen species, and nitric oxide levels increased by high glucose treatment were effectively decreased by treatment with Polyopes lancifolia extract in a dose-dependent manner. Also, Polyopes lancifolia extract treatment reduced the overexpressions of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B proteins activation that was induced by high glucose in HUVECs. These results indicate that Polyopes lancifolia extract is a potential therapeutic material that will reduce the damage caused by high glucose-induced-oxidative stress associated with diabetes.

Protective Effect of Stilbenes on Oxidative Damage

  • Na, Min-Kyun;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • 제13권4호
    • /
    • pp.369-372
    • /
    • 2007
  • Oxidative stress induced by reactive oxygen species (ROS) has been suggested to be the cause of various degenerative diseases as well as aging. To evaluate the antioxidant potential of stilbenes, we have investigated the cytoprotective effect of 10 stilbenes derived from plants on the oxidative stress induced by tertiary butyl hydroperoxide (t-BuOOH). Of the stilbenes tested, piceatannol (3) showed the most potent activity, which was further investigated using an animal model. When 3 (30 or 10 mg/kg) was topically administered prior to UVB irradiation, the amount of the thiobarbituric acid reactive substances (TBARS) was significantly reduced compared to that of the control (vehicle). Our findings suggest that piceatannol is capable of protecting cells and tissues from oxidative stress.

Protodioscin protects porcine oocytes against H2O2-induced oxidative stress during in vitro maturation

  • So-Hee Kim;Seung-Eun Lee;Jae-Wook Yoon;Hyo-Jin Park;Seung-Hwan Oh;Do-Geon Lee;Da-Bin Pyeon;Eun-Young Kim;Se-Pill Park
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.710-719
    • /
    • 2023
  • Objective: The present study investigated whether protodioscin (PD), a steroidal saponin mainly found in rhizome of Dioscorea species, alleviates oxidative stress-induced damage of porcine oocytes during in vitro maturation. Methods: Oocytes were treated with different concentrations of PD (0, 1, 10, 100, and 200 µM) in the presence of 200 µM H2O2 during in vitro maturation. Following maturation, spindle morphology and mitogen-activated protein kinase activity was assessed along with reactive oxygen species level, GSH activity, and mRNA expression of endogenous antioxidant genes at the MII stage. On the day 7 after parthenogenetic activation, blastocyst formation rate was calculated and the quality of embryo and mRNA expression of development-related genes was evaluated. Results: Developmental competence was significantly poorer in the 0 µM PD-treated (control) group than in the non-treated (normal) and 10 µM PD-treated (10PD) groups. Although the reactive oxygen species level did not significantly differ between these three groups, the glutathione level and mRNA expression of antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, nuclear factor erythroid 2-related factor 2 [Nrf2], and hemo oxygenase-1 [HO-1]) were significantly higher in the normal and 10PD groups than in the control group. In addition, the percentage of oocytes with defective spindle and abnormal chromosomal alignment was significantly lower and the ratio of phosphorylated p44/42 to total p44/42 was significantly higher in the normal and 10PD groups than in the control group. The total cell number per blastocyst was significantly higher in the 10PD group than in the control group. The percentage of apoptotic cells in blastocysts was highest in the control group; however, the difference was not significant. mRNA expression of development-related genes (POU domain, class 5, transcription factor 1 [POU5F1], caudal type homeobox 2 [CDX2], Nanog homeobox [NANOG]) was consistently increased by addition of PD. Conclusion: The PD effectively improves the developmental competence and quality of blastocysts by protecting porcine oocytes against oxidative stress.

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.