• Title/Summary/Keyword: Reaction-diffusion models

Search Result 53, Processing Time 0.02 seconds

Mathematical Modeling for Leaching and dissolution of Solidified Radioactive Waste in a Geologic Reposiory (지하 처분장에서의 방사성폐기물 고화체의 용출 및 용해에 대한 수학적 모형 분석)

  • Kim, Chang-Lak;Park, Kwang-Sub;Cho, Chan-Hee;Kim, Jhinwung;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.120-131
    • /
    • 1988
  • A souce term model describes mathematically the source of radionuclides as they begin slow migration and decay in deep groundwater. Various source term models based on mass-transfer analysis and measurement-based source term models are reviewed. Ganerally, two processes are involved in leaching or dissolution: (1) chemical reactions and (2) mass transfer by diffusion. The chemical reaction controls the dissolution rates only during the early stage of exposure to groundwater. The exterior-field mass transfer may control the long term dissolution rates from the waste solid in a geologic repository. Mass-transfer analyses re3y on detailed and careful application of the governing equations that describe the mechanistic processes of transport of material between and within phases. If used correctly, source term models based on mass-transfer theory are valuable and necessary tools for developing reliable predictions.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Partial premixed combustion modeling of diffusion flame burner for SiO2 deposition as optical fiber cladding (광섬유 클래딩용 SiO2 증착을 위한 확산 화염 버너의 부분 예혼합 연소 모델링)

  • Park, Hyung-Bin;Han, Yoonsoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.365-371
    • /
    • 2019
  • In this study, the flame temperature distribution of the diffusion flame burner for SiO2 deposition was analyzed by the computational fluid analysis. This corresponds to the previous step for simulating the SiO2 preform deposition process for manufacturing optical fibers using environmentally friendly raw materials. In order to model premixed combustion, heat flow, convection, and chemical reactions were considered, and Reynolds-averaged Navier-Stokes equations and k-ω models were used. As a result, the temperature distribution of the flame showed a tendency to increase the distance from the nozzle surface to the maximum temperature when the flow rate of the auxiliary oxygen increased. In addition, it was confirmed that the temperature distribution due to incomplete combustion was large in the combustion reaction with a large equivalence ratio of the mixed gas.

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel (폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.798-806
    • /
    • 2017
  • A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack

  • Zuo, Xiao-Bao;Wang, Jia-Lin;Sun, Wei;Li, Hua;Yin, Guang-Ji
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.19-31
    • /
    • 2017
  • This paper uses modelling and experiment to perform a quantitative analysis for the gypsum and ettringite formations in cement pastes subjected to sulfate attack. Firstly, based on Fick's law and chemical reaction kinetics, a diffusion model of sulfate ions in cement pastes is proposed, and then the model of the gypsum and ettringite formations is established to analyze its contents in cement pastes with corrosion time. Secondly, the corrosion experiment of the specimens with cement pastes immersed into 2.5%, 5.0% and 10.0% $Na_2SO_4$ solutions are carried out, and by using XRD-Rietveld method, the phases of powder samples from the specimens are quantitatively analyzed to obtain the contents of gypsum and ettringite in different surface depth, solution concentration and corrosion time. Finally, the contents of gypsum and ettringite calculated by the models are compared with the results from the XRD experiments, and then the effects of surface depth, corrosion time and solution concentration on the gypsum and ettringite formations in cement pastes are discussed.

Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Tan, Kaixuan;Zhang, Shuwen;Ye, Wenhao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1175-1184
    • /
    • 2022
  • The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample's pore structure and the dissolution rate during the leaching was fitted.

Soild-state reaction in Ti/Ni multilayers

  • ;;;;Y.V.Kudryavtsev;B.Szymanski
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.140-140
    • /
    • 1999
  • Ti/Ni multilayered films (MLF) are ideal for neutron optics particularly in neutron guides and focusing devices. This system also possesses the tendency of amorphization through a solid-state reaction (SSR). This behaviors are closely related to the electronic structures and both magneto-optical (MO) and optical properties of metals depend strongly on their electron energy structures. Mutual inter-diffusion of the Tin and Ni atoms in the MLF caused by a low temperature annealing should decrease the thickness of pure Ni, as well as change the chemical and atomic order in the reactive zone. The application of the MO spectroscopy to the study of SSR in the MLF allows us to obtain an additional information on the changes in the atomic and chemical orders in the interface region. The optical one has no restriction on the magnetic state of the constituent sublayers. Therefore, the changes in magnetic, MO and optical properties of the Ti/Ni MLF due to SSR can be expected. To the best of our knowledge, the MO and optical spectroscopies were not used for this purpose. SSR has been studied in the series of the Ti/Ni MLFs with bilayer periods of 0.65-22.2nm and constant ratio of the Ti to Ni sublayers thickness by using MO and optical spectroscopies as well as an x-ray diffraction. The experimental MO and optical spectra are compared with the computer-simulated spectra, assuming various interface models. The relative changes in the x-ray diffraction spectra and MO properties of the Ti/Ni MLF caused by annealing are bigger for the multilayers with "thick" sublayers, or the SSR with the formation of amorphous alloy takes place mainly in the Ti/Ni multilayers with "thick" sublayers, while in the nominal threshold thickness of the Ni-sublayer for the observation of the equatorial Kerr effect in the as-deposited and annealed Ti/Ni MLFs of about 3.0 and 4.5nm thick is explained by the formation of amorphous alloy during the deposition or the formation of the nonmagnetic alloyed regions between pure components as a result of the SSR. For the case of Ti/Ni MLF the MO approach is more sensitive for the determination of the thickness of the reacted zone, while x-ray diffraction is more useful for structural analyses.structural analyses.

  • PDF

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Lee Hwa-Woon;Kim Yoo-Keun;Won Gyeong-Mee;Park Jong-Kil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorological processes. In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification process through observation is emphasized.

  • PDF

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.