• Title/Summary/Keyword: Reaction rate

Search Result 5,771, Processing Time 0.03 seconds

A Study on the Transesterification Reaction Between Methyl Methacylate and Diethanolamine (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구)

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.41-47
    • /
    • 1986
  • The transesterification reaction between diethanolamine and methyl-methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The quantity of methylmethacrylate reacted in the reaction flask was measured by gas chromatography and liquid chromatography, and the reaction rate was investigated by measuring of the quantity of products and reactnts under various catalysts. The transesterification reaction was carried out in the first order reaction kinetics with respect to the concentration of diethanolamine and methylmethacrylate, respectively. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The linear relationship was shown between apparent rate constant and reciprocal absolute temperature, and by the Arrhenius plot, the activation energy has been calculated as 11.08 Kcal with zinc acetate catalyst, 17.99 Kcal without catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Decarbonization Kinetics of Molten Iron by Ar+O2 Gas Bubbling (Ar+O2 혼합가스 취입에 의한 용철의 탈탄 반응속도)

  • Sohn, Ho-Sang;Jung, Kwang-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2009
  • Molten iron with 2 mass % carbon content was decarbonized at 1823 K~1923 K by bubbling $Ar+O_2$ gas through a submerged nozzle. The reaction rate was significantly influenced by the oxygen partial pressure and the gas flow rate. Little evolution of CO gas was observed in the initial 5 seconds of the oxidation; however, this was followed by a period of high evolution rate of CO gas. The partial pressure of CO gas decreased with further progress of the decarbonization. The overall reaction is decomposed to two elementary reactions: the decarbonization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of carbon and oxygen contents in the melt and the CO partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model. Based on the present model, it was explained that the decarbonization rate of molten iron was controlled by gas-phase mass transfer at the first stage of reaction, but the rate controlling step was transferred to liquid-phase mass transfer from one third of reaction time.

The Effect of H2 Flow Rate and TMS Concentration on Synthesizing Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction (기상반응에 의한 $\beta$-SiC 초미분말 합성시 수소 가스유량과 TMS 농도의 영향)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.853-858
    • /
    • 1999
  • To investigate the effect of H2 flow rate and TMS[Si(CH3)4] concentration on synthesizing ultrafine ${\beta}$-SiC powder by vapor phase reaction the experiment was performed at 1100$^{\circ}C$ of the reaction temperature under the condition of 200-2000 cc/min of H2 gas flow rate and 1-10% of TMS concentration respectively. The shape of ${\beta}$-SiC particles synthesized was spherical and the size of particles decreased and the distribution of particles was more uniform with increasing H2 gas flow rate. In this case Si powders were coexisted with ${\beta}$-SiC Pure and ultrafine ${\beta}$-SiC powders without Si were obtained under the condition of above 2% of TMS concentration and below 1500 cc/min of H2 gas flow rate.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

Influence of Coal Conversion Model and Turbulent Mixing Rate in Numerical Simulation of a Pulverized-coal-fired Boiler (미분탄 보일러 연소 해석에서 석탄 반응 모델 및 난류 혼합 속도의 영향 평가)

  • Yang, Joo-Hyang;Kim, Jung-Eun A.;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2015
  • Investigating coal combustion in a large-scale boiler using computational fluid dynamics (CFD) requires a combination of flow and reaction models. These models include a number of rate constants which are often difficult to determine or validate for particular coals or furnaces. Nonetheless, CFD plays an important role in developing new combustion technologies and improving the operation. In this study, the model selection and rate constants for coal devolatilization, char conversion, and turbulent reaction were evaluated for a commercial wall-firing boiler. The influence of devolatilization and char reaction models was found not significant on the overall temperature distribution and heat transfer rate. However, the difference in the flame shapes near the burners were noticeable. Compared to the coal conversion models, the rate constant used for the eddy dissipation rate of gaseous reactions had a larger influence on the temperature and heat transfer rate. Based on the operation data, a value for the rate constant was recommended.

The Treatment of Flue SO$_2$ Gas by Cu Powder (I) (구리 분말을 이용한 $SO_2$ 배기가스의 처리(I))

  • 정국삼;김학성;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)

  • PDF

A Study on the Transesterification Reaction between Methyl Methacrylate and Diethanolamine (II) (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구(II))

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.67-71
    • /
    • 1987
  • The transesterification reaction between diethanolamine and methyl methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The amount of reacted methyl methacrylate was measured by gas chromatography and liquid chromatography, and the reaction rate also measured from the amount of reaction products and reactants under each catalyst. The transesterification reaction was carried out in the first order with respect to the concentration of diethanolamine and methyl methacrylate, respectively. The over-all order is 2nd. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor (청정수소생산을 위한 에탄올 수증기개질반응 및 막반응기에서의 응용)

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.