• Title/Summary/Keyword: Reaction probability

Search Result 128, Processing Time 0.026 seconds

Quasiclassical Trajectory Calculations for the Reaction Ne + H2+ → NeH+ + H

  • Wang, Yuliang;Tian, Baoguo;Qu, Liangsheng;Chen, Juna;Li, Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4210-4214
    • /
    • 2011
  • Quasiclassical trajectory (QCT) calculations of Ne + ${H_2}^+$ reaction have been carried out on the adiabatic potential energy surface of the ground state $1^2$ A'. The reaction probability of the title reaction for J = 0 has been calculated, and the QCT result is consistent with the previous quantum mechanical wave packet result. Quasiclassical trajectory calculations of the four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r$, ${\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. Due to the well in $1^2$ A' PES, the reagent vibrational excitation has greater influence on the polarization of the product rotational angular momentum vectors j' than the collision energy.

Development of protection coating material on the surface of insulation tiles of space vehicle (우주선용 고온 절연체의 표면 코팅 재료 개발)

  • 김영채;문세기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.370-377
    • /
    • 1995
  • The recombination of oxygen and nitrogen atoms on the surfaces of two coating m materials of the Space Shuttle Orbiter (SSO), a reaction cured glass (RCG) and a spinel (C742), was investigated. The recombination probability, $\gamma$, i.e., the probability that atoms im p pinging on the surface will recombine, was measured in a diffusion reactor. Value of $\gamma$ for oxy g gen atom on C742 ($3 {\times} 10^{-2}$) was much higher than that on RCG ($4 {\times} 10^{-4}$) at the tempera t ture of SSO re-entry (ca. 1000K). The higher value of $\gamma$ on C742 indicates a higher number d density of active sites than RCG. It suggests the possibility of designing less active surfaces by i inducing the desorption at lower temperature.

  • PDF

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

Simulation Study on the Etching Mechanism of the Bosch Process (보쉬 공정의 식각 메커니즘에 대한 전산모사 연구)

  • Kim, Chang-Gyu;Moon, Jae-Seung;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.797-804
    • /
    • 2011
  • In this study, the mechanisms of the three steps (the polymer deposition step, the polymer etching step and the Si etching step) that constitute the Bosch process were investigated. The effects of radicals and ions on each step were quantitatively analyzed by comparing the simulated aspect ratio dependency of the deposition or etch rate with the experimental results. In the polymer deposition step, fluorocarbon polymer is deposited by chemical reactions of $CF_x$ radicals, of which the reaction probability is 0.13. Although the polymer etching step and the Si etching step were conducted under the same conditions, the etching mechanisms of polymer and Si were found to be quite different. In the polymer etching step, both chemical etching and physical sputter-etching contribute to the polymer etching. Whereas, in the Si etching step, Si is chemically etched by F radicals, of which the reactivity is greatly increased by the bombardment of energetic ions.

Study on the Mechanism and Modeling for Super-filling of High-Aspect-Ratio Features with Copper by Catalyst Enhanced Chemical Vapor Deposition Coupled with Plasma Treatment (플라즈마 처리와 결합된 Cu 촉매반응 화학기상증착법의 메커니즘과 고종횡비 패턴의 충진양상 전산모사에 대한 연구)

  • Kim, Chang-Gyu;Lee, Do-Seon;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • The mechanism behind super-filling of high-aspect-ratio features with Cu by catalyst-enhanced chemical vapor deposition (CECVD) coupled with plasma treatment is described and the metrology required to predict the filling feasibility is identified and quantified. The reaction probability of a Cu precursor was determined as a function of substrate temperature. Iodine adatoms are deactivated by the bombardment of energetic particles and also by the overdeposition of sputtered Cu atoms during the plasma treatment. The degree of deactivation of adsorbed iodine was experimentally quantified. The quantified factors, reaction probability and degree of deactivation of iodine were introduced to the simulation for the prediction of the trench filling aspect by CECVD coupled with plasma treatment. Simulated results show excellent agreement with the experimental filling aspects.

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S.;Agmon, Noam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1020-1028
    • /
    • 2012
  • This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

A study of turbulent premixed flame structure in a plane shear layer (평면전단층의 난류예혼합 화염의 구조에 관한 실험적 연구)

  • 이재득;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1989
  • A turbulent premixed flames of layer formed between burned hot gas and unburned mixture were investigated by means of schlieren photograph with fluctuations of temperature and ion current. The combustion intensity between burned hot gas and shear layer was higher than the intensity between unburned mixture and shear layer. A wrinkled laminar flame and flamelet were appeared at downstream to exist and distributed reaction zone was at upstream as a result of analyzed probability density functions of temperature fluctuation. The initial combustion intensity of reaction zone of eddy between burned hot gas and shear layer was higher than that of final, flowing downstream, and vice versa between unburned mixture and shear layer.

  • PDF

Reaction Dynamics of Continuous Time Random Walker in Heterogeneous Environment

  • Seong, Jae-Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.277-280
    • /
    • 2006
  • We report an exact relation between the survival probability, the revisit time distribution, and the reaction-free propagator of the continuous time random walker. The relation holds even for such a general case where the random walker has a distinct jump dynamics at each lattice site, which may be dependent also on the direction of the jump. The application range of the obtained relation is not limited to the nearest neighbor hopping in the bulk lattice either. The result is applicable to a higher dimensional system with the spherical symmetry as well as it is to the one-dimensional system.

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.205-214
    • /
    • 2002
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.