• Title/Summary/Keyword: Reaction factor

Search Result 1,826, Processing Time 0.028 seconds

Pervaporation Separation Characteristics for Water-Ethanol Mixtures Using Porous Hollow Fiber PVA Composite Membranes (미세 다공성 중공사 PVA복합막을 이용한 에탄올 수용액의 투과증발분리 특성)

  • Kim, Ji Seon;Park, Hun Whee;Seo, Chang Hee;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.360-366
    • /
    • 2013
  • The Poly (vinylidene fluoride) and poly (acrylonitrile) (PAN) hollow fiber composite membranes coated with poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) as the crosslinkig agent are prepared. The resulting membranes were characterized for aqueous 90 wt% ethanol solution by pervaporation techniques in terms of the permeability and separation factor. In general, as both the crsslinking reaction temperature and the crosslinking agent concentration increase, the permeability decrease while the separation factor tends to increase. And also the permeability increased and the separation factor decreased as the feed temperature increased. Typically, the permeability $502g/m^2hr$ at the feed temperature $70^{\circ}C$ was obtained for PVDF hollow fiber membrane prepared with the crosslinking agent PAA 3 wt% at the reaction temperature $60^{\circ}C$ whereas the separation factor 218 was shown for the membrane reacted with PAA 11 wt% and at $100^{\circ}C$ for the feed temperature $50^{\circ}C$.

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

Controlling Size and Distribution for Nano-sized Polystyrene Spheres

  • Yun, Dong-Shin;Lee, Hyeong-Seok;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1345-1348
    • /
    • 2010
  • Highly monodisperse polystyrene (PS) nanospheres were fabricated by surfactant-free emulsion polymerization in water using styrene, 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AIBA), and poly(vinyl pyrrolidone) (PVP). The size and distribution of the PS nanospheres were systematically investigated in terms of initiator concentration, stabilizer concentration, reaction temperature, reaction time, and reactant concentration. With increasing AIBA initiator concentration, PS particle sizes are raised proportionally, and can be controlled from 120 to 380 nm. Particle sizes were reduced with increasing PVP concentration. This decrease occurs because a high PVP concentration leads to a large number of primary nuclei in the early stage of polymerization. When the reaction temperature increased, the sizes of the PS particles decrease slightly. The particles grew quickly during the initial reaction stage (1-3 h) and the growth rate became steady-state after 6 h. The PS sizes approximately doubled when the reactant (styrene, PVP, azo-initiator) concentrations were increased by a factor of eight.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Inhibitory Effect of Fermented Red Ginseng against Passive Cutaneous Anaphylaxis Reaction and Scratching behaviors in Mice

  • Bae, Eun-Ah;Trinh, Hien-Trung;Lee, Young-Chul;Kim, Sang-Wook;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • To evaluate the antiatopic effect of Korea red ginseng (RG, steamed root of Panax ginseng CA Meyer, Family Araliaceae) fermented by Bifidobacterium longum H-1 (FRG), its inhibitory effect on passive cutaneous anaphylaxis (PCA) reaction and itching in mice was measured. FRG and its ingredient saponin fraction (FSF) potently inhibited PCA reaction and scratching behaviors. FRG at a dose of 200 mg/kg and FSF at a dose of 50 mg/kg significantly inhibited the scratching frequency by 45% and 47%, respectively. FRG and FSF also inhibited the degranulation and protein expression of tumor-necrosis $factor-{\alpha}$ and interleukin-4 of RBL-2H3 cells induced by IgE-complex. However, polysaccharide fraction of FRG (FPF) weakly inhibited it, compared with FSF. The inhibitory effect of FRG against PCA reaction and scratching behaviors more potently inhibited than that of RG. Based on these findings, FRG can improve allergic skin disorders atopic dermatitis by the regulation of $TNF-{\alpha}$, and IL-4 produced by mast cells and basophils and its degranulation.

Gasification reactivity of Chinese Shinwha Coal Chars with Steam (스팀을 이용한 중국산 신화 석탄 촤 가스화 반응에 관한 연구)

  • Kang, Min-Woong;Seo, Dong-Kyun;Kim, Yong-Tak;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, carbon conversion was measured using an electronic mass balance. In a lab scale furnace, each coal sample was pyrolyzed in a nitrogen environment and became coal char, which was then gasified with steam under isothermal conditions. The reactivity of coal char was investigated at various temperatures and steam concentrations. The VRM(volume reaction model), SCM(shrinking core model), and RPM(random pore model) were used to interpret experimental data. For each model the activation energy(Ea), pre-exponential factor (A), and reaction order(n) of the coal char-steam reaction were determined by applying the Arrhenius equation into the data obtained with thermo-gravimetric analysis(TGA). According to this study, it was found that experimental data agreed better with the VRM and SCM for 1,000 and $1,100^{\circ}C$, and the RPM for 1,200 and $1,300^{\circ}C$. The reactivity of chars increased with the increase of gasification temperature. The structure parameter(${\psi}$) of the surface area for the RPM was obtained.

A Study of BRT System to Analyze Driving Skill (운전 숙련도 분석을 위한 BRT 시스템에 대한 연구)

  • Jeon, Jong-Oh;Park, Seong-Mo;Won, Yong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • In modem society, car are the most important transportation. Thereby, car accidents has been increasing steadily. The driver is the biggest factor of car accident. Therefor, various studies about driver (reaction time, mentality, physiological signal, age, pattern of drive) are underway. In this paper, we design a embedded system for measuring the reaction time by driving skill. The proposed system is composed of measuring brake module, OBD-2 scanner and bluetooth transmission module. Also, we implement GUI program to analyze experiment result and database to store results. Though our proposed system, we can analyze driving skill.

The Extract of Gleditsiae Spina Inhibits Mast Cell-Mediated Allergic Reactions Through the Inhibition of Histamine Release and Inflammatory Cytokine Production

  • Shin, Tae-Yong
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.185-191
    • /
    • 2010
  • Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, asthma and atopic dermatitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. In the present study, the effect of water extract of Gleditsiae Spina (WGS) (Leguminosae), on compound 48/80-induced systemic allergic reaction, anti-DNP IgE antibody-induced local allergic reaction, and histamine release from human mast cell line (HMC-1) cells were studied. In addition, the effect of WGS on phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (A23187)-induced gene expression and secretion of pro-inflammatory cytokines were investigated using HMC-1 cells. WGS was anally administered to mice for high and fast absorption. WGS inhibited compound 48/80-induced systemic allergic reaction. WGS dose-dependently decreased the IgE-mediated passive cutaneous anaphylaxis. WGS reduced histamine release from HMC-1 cells. In addition, WGS decreased the gene expression and secretion of pro-inflammatory cytokines in PMA plus A23187-stimulated HMC-1 cells. These findings provide evidence that WGS could be a candidate as an antiallergic agent.

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.

Formation of a V-Added Ti Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전합성과 확산 열처리를 이용한 V 이 첨가된 TiAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.696-700
    • /
    • 2002
  • The Ti-aluminide intermetallic compound was formed from high purity elemental Ti and Al foils by self-propagating, high-temperature synthesis(SHS) in hot press. formation of $TiAl_3$ at the interface between Ti and Al foils was controlled by temperature, pressure, heating rate, and so on. According to the thermal analysis, it is known in this study that the heating rate is the most important factor to form the intermetallic compound by this SHS reaction. The V layer addition between Al and Ti foils increased SHS reaction temperatures. The fully dense, well-boned inter-metallic composite($TiA1/Ti_3$Al) sheets of 700 m thickness were formed by heat treatment at $1000^{\circ}C$ for 10 hours after the SHS reaction of alternatively layered 10 Ti and 9 Al foils with the V coating layer. The phases and microstructures of intermetallic composite sheets were confirmed by EPMA and XRD.