Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.5.1345

Controlling Size and Distribution for Nano-sized Polystyrene Spheres  

Yun, Dong-Shin (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology)
Lee, Hyeong-Seok (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology)
Jang, Ho-Gyeom (Department of Chemistry, Korea University)
Yoo, Jung-Whan (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Abstract
Highly monodisperse polystyrene (PS) nanospheres were fabricated by surfactant-free emulsion polymerization in water using styrene, 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AIBA), and poly(vinyl pyrrolidone) (PVP). The size and distribution of the PS nanospheres were systematically investigated in terms of initiator concentration, stabilizer concentration, reaction temperature, reaction time, and reactant concentration. With increasing AIBA initiator concentration, PS particle sizes are raised proportionally, and can be controlled from 120 to 380 nm. Particle sizes were reduced with increasing PVP concentration. This decrease occurs because a high PVP concentration leads to a large number of primary nuclei in the early stage of polymerization. When the reaction temperature increased, the sizes of the PS particles decrease slightly. The particles grew quickly during the initial reaction stage (1-3 h) and the growth rate became steady-state after 6 h. The PS sizes approximately doubled when the reactant (styrene, PVP, azo-initiator) concentrations were increased by a factor of eight.
Keywords
Polystyrene; Nanospheres; Surfactant-free emulsion polymerization; Polymer;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Xu, J.; Li, P.; Wu, C. J. Polym. Sci. Part. A. Polym. Chem. 1999, 37, 2069.   DOI   ScienceOn
2 Aslamazova, T. R.; Tauer, K. Colloids Surf. A 2007, 300, 260.   DOI   ScienceOn
3 Yamada, Y.; Sakamoto, T.; Gu, S.; Konno, M. J. Colloid Interface Sci. 2005, 281, 49.   DOI   ScienceOn
4 Lee, J.; Ha, J. U.; Choe, S.; Lee, C. Shim, S. E. J. Colloid Interface Sci. 2006, 298, 663.   DOI   ScienceOn
5 Du, X.; He, J. J. Appl. Polym. Sci. 2008, 108, 1755.   DOI   ScienceOn
6 Bamnolker, H.; Margel, S. J. Polym. Sci. Polym. Chem. Ed. 1996, 34, 1857.   DOI   ScienceOn
7 Yamamoto, T.; Nakayama, M.; Kanda, Y.; Higashitani, K. J. Colloid Interface Sci. 2006, 297, 112.   DOI   ScienceOn
8 Wang, D. P.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. J. Appl. Polym. Sci. 2002, 84, 2692.   DOI   ScienceOn
9 Chern, C.-S.; Lin, C.-H. Polymer 2000, 41, 4473.   DOI   ScienceOn
10 Yamamoto, T.; Iuoue, M.; Kanda, Y.; Higashitani, K. Chem. Lett. 2004, 33, 1440.   DOI   ScienceOn
11 Paine, A. J. J. Colloid Interface Sci. 1990, 138, 157.   DOI   ScienceOn
12 Matsumoto, T.; Ochio, A. Kobunshi Kagaku 1965, 22, 481.   DOI
13 Orihara, S.; Konno, M. J. Colloid Interface Sci. 2000, 230, 210.   DOI   ScienceOn
14 Covolan, V. L.; Mei, L. H. I.; Rossi, C. L. Polym. Adv. Technol. 1997, 8, 44.   DOI   ScienceOn
15 Fudouz, H.; Xia, Y. Adv. Mater. 2003, 15, 892.   DOI   ScienceOn
16 Ugelstad, J.; Stenstad, P.; Kilaas, L.; Prestvik, W. S.; Rian, A.; Nustad, K.; Herje, R.; Berge, A. Macromol. Symp. 1996, 101, 491.