• Title/Summary/Keyword: Reaction enthalpy

Search Result 157, Processing Time 0.028 seconds

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Physicochemical Properties of Hydroxypropylated Rice Starches (하이드록시프로필화 쌀 전분의 이화학적 특성)

  • Choi, Hyun-Wook;Koo, Hye-Jin;Kim, Chong-Tai;Hwang, Seong-Yun;Kim, Dong-Seob;Choi, Sung-Won;Hur, Nam-Youn;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2005
  • Physicochemical properties of hydroxypropylated rice starches were investigated. Swelling power of hydroxypropylated rice starch increased at relatively lower temperature than native rice starch. Solubility of hydroxypropylated rice starch was lower (1.9-13.4%) than that of native rice starch (2.2-13.8%), and increased with increasing amount of propylene oxide. Pasting temperature ($66.2-70.8^{\circ}C$) and peak viscosity (2,843-3,395cp) of hydroxypropylated rice starch were lower than those of native starch ($71.6^{\circ}C,\;3,976\;cp$) and decreased with increasing amount of propylene oxide, regardless of reaction time. DSC thermal transitions of hydroxypropylated rice starches shifted toward lower temperature. Amylopectin-melting enthalpy of hydroxypropylated rice starch decreased (11.8-9.8J/g) with increasing amount of propylene oxide and was lower than that of native starch (11.9 J/g). These results indicate hydroxypropylation lowered swelling power and gelatinization temperatures of rice starch, because internal bonds of rice starch molecules were sterically weaken by substituted hydroxypropyl groups.

Kinetics for the Transformation of Outer Charge Transfer Complex to Inner Complex (Outer Charge Transfer Complex가 Inner Complex로의 변환에 따른 속도론적 연구)

  • Kwon Oh-Yun;Paek U-Hyon;Kim Eung-Ryul
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.343-349
    • /
    • 1991
  • Formation of charge transfer complex between iodine and substituted aniline [aniline, N,N-dimethylaniline(N,N-DMA), 2,6-dimethylaniline(2,6-DMA), 2,4,6-trimethylaniline(2,4,6-TMA)] in CHCl$_3$, CH$_2$Cl$_2$ : CHCl$_3$ (1 : 1), and CH$_2$Cl$_2$ have been studied kinetically by using conductivity method. In the transformation of initially formed outer charge transfer complex to inner complex, the effects of substituted aniline as electron donor and polar medium on the reaction were investigated. The rate of transformation depend on the dielectric contribution of medium and pK$_a$ value of substituted aniline. The order of rate increasing is 2,4,6-TMA, 2,6-DMA, aniline, and N,N-DMA. The activation enthalpy ${\Delta}H^{\neq}$ for 2.5 M-substituted aniline in CHCl$_3$ at 25$^{\circ}C$ is respectively N,N-DMA, 3.47 kcal/mol; aniline, 4.25 kcal/mol; 2,6-DMA, 7.79 kcal/mol and 2,4,6-TMA, 7.96 kcal/mol; and activation entropy ${\Delta}S^{\neq}$ is large and negative value of -41 ~ -55 cal/mol${\cdot}$K.

  • PDF

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Gelatinization Properties of Starch Dough with Moisture Content, Heating Temperature and Heating Time (수분함량, 가열온도 및 가열시간에 따른 전분 반죽의 호화특성)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.428-438
    • /
    • 1995
  • The gelatinization properties of corn and waxy corn starch doughs were examined at various moisture contents, heating temperatures and heating times. The onset temperatures of gelatinization with 1% CMC using Brabender Amylograph were $64^{\circ}C$ for both corn and waxy corn starch. In the gelatinization properties using DSC, onset temperature$(T_o)$, maximum peak temperature$(T_p)$, completion temperature$(T_c)$ and enthalpy of the corn starch were $68.15^{\circ}C,\;74.01^{\circ}C,\;85.65^{\circ}C$ and $3.2\;cal/gram$ respectively. While those of the waxy corn starch were $68.24^{\circ}C,\;75.43^{\circ}C,\;93^{\circ}C$ and $4.2\;cal/gram$ respectively. In enzymatic analysis, when the moisture content increased from 36% to 52% and heating temperature from $60^{\circ}C$ to $100^{\circ}C$, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The regression equations of gelatinization degree (Y) of starch dough in the range of $36{\sim}52%$ moisture content $(X_1)\;60{\sim}100^{\circ}C$ heating temperature $(X_2)\;and\;0{\sim}2.0$ min heating time $(X_3)$ were examined using response surface analysis. The regression equation of corn starch dough was: $Y=28.659+8.638\;X_}+15.675\;X_2+7.770\;X_3-1.620\;{X_1}^2+10.790\;X_1X_2-4.220\;{X_2}^2+0.510\;X_1X_3+1.980\;X_2X_3-6.850\;{X_3}^2\;(R^2=0.9714)$ and that of waxy corn starch dough was: $Y=32.617+12.535\;X_1+20.470\;X_2+8.608\;X_3+4.093\;{X_1}^2+13.550\;X_1X_2-4.467\;{X_2}^2+1.560\;X_1X_3+2.160\;X_2X_3-9.527\;{X_3}^2$\;(R^2=0.9621)$. As the moisture content, heating temperature and heating time increased, the reaction rate constant(k) of gelatinization increased. The greatest reaction rate constant was observed at initial 0.5 min heating time of 1st gelatinization stage. At the heating temperature of $90^{\circ}C$, gelatinization of starch dough was completed almost in the initial 0.5 min heating time. The reaction rate constant of waxy corn starch dough was higher than that of corn starch dough under the same gelatinization conditions. At the 52% moisture content, the regression equation between reaction rate constant(k) and heating temperature(T) for corn starch dough was $log\;k=11.1140-4.1226{\times}10^3(1/T)$ (r=-0.9520) and that of waxy corn starch dough was $log\;k=10.1195-3.7090{\times}10^3(1/T)$ (r=-0.9064).

  • PDF

Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa (가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tai;Ahn, Soon-Cheol;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.534-540
    • /
    • 2007
  • In this study, waxy rice starch was chemically modified using phosphorous oxychloride ($POCl_3$, 0.002-0.008%). Then the physicochemical properties of resulting cross-linked waxy rice starches were investigated in order to reduce the steeping time of Yukwa (a Korean oil-puffed rice snack) processing. The swelling powers of the cross-linked waxy rice starch samples were higher than the native waxy rice starch at temperatures above $60^{\circ}C$, and their increases were proportional to the $POCl_3$, concentration. The solubility of the cross-linked waxy rice starch was lower (1.6-3.4%) than the native waxy rice starch (2.7-6.1%). However, the moisture sorption isotherm of the cross-linked waxy rice starch was not significantly different from the native waxy rice starch. The rapid visco analyze. (RVA) pasting temperatures $(65.4-67^{\circ}C)$ of the cross-linked waxy rice starch were lower than those of the native starch $(67^{\circ}C)$. The RVA peak viscosities (287-337 RVU) of the cross-linked waxy rice starch were higher than that of native starch (179 rapid visco units (RVU)), and increased with increasing $POCl_3$ concentration. For the differential scornning calorimeter thermal characteristics, although Tc shifted toward higher temperatures with cross-linking, the To, Tp, and amylopectiin melting enthalpy of the cross-linked waxy rice starch showed no differences compared to the native waxy rice starch. The X-ray diffraction patterns of both the native and cross-linked waxy rice starches showed typical A-type crystal patterns, suggesting that cross-linking mainly occurs in the amorphous regions of starch granules. Therefore, the cross-linking reaction did not change the crystalline region, but altered the amorphous region of the waxy rice starch molecules, resulting in changes of solubility and RVA pasting properties in the cross-linked waxy rice starch. In summary, since cross-linked waxy rice starch has a high puffing efficiency and no browning reaction, it may be applicable for Yukwa processing without a long steeping process.

Mechanism and Activation Parameters $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$ and ${\Delta}V^{\neq})$ of Electron Transfer Reaction Between $Co^{II}CyDTA\;and\;Fe^{III}$CN Complex Ions (Co(II)-CyDTA와 Fe(III)-CN 착이온간의 전자이동반응에서 활성화파라미터 $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$${\Delta}V^{\neq})$ 와 반응메카니즘)

  • Yu Chul Park;Seong Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.273-280
    • /
    • 1989
  • The spectra of the $Co^{II}CyDTA$(CyDTA: cyclohexyldiaminetetraacetic acid) complex have been measured in aqueous solution of pH = 6-13.2. The red shift of the spectrum in the more basic solution was ascribed to the transformation of $CoCyDTA^{2-}$ into $CoCyDTA(OH)^{3-}$. The equilibrium constant, $K_{OH} = [CoCyDTA(OH)^{3-}]/[CoCyDTA^{2-}][OH^-]$ was $75M^{-1}$ at $40^{\circ}C$. The electron transfer reactions of $CoCyDTA^{2-}$ and $CoCyDTA(OH)^{3-}$ with $Fe(CN)_6^{3-}$ have been studied using spectrophotometric technique in the range of pH applied to the determination of equilibrium constant. The pseudo first-order rate constants observed ($k_{obs}$) were not changed upto pH = 10.8, but increased with increasing pH in the range of pH = $10.8{\sim}13.0$. The rate law reduced in the range of pH = 6-13 was $k_{obs} = (k_3[CoCyDTA^{2-}] + k_4[CoCyDTA(OH)^{3-}])/(1+K_1[CoCyDTA^{2-}])$. The rate constants of the reactions (3a) and (3b), $k_3$ and $k_4$ respectively have been determined to be 0.529 and $4.500M^{-1}sec^{-1}$ at $40^{\circ}C$. The activation entropies (147{\pm}1.1JK^{-1} mol^{-1}$ at pH = 10.8) and activation volumes $(6.25cm^3mol^{-1}, pH = 10.8)$ increased with increasing pH, while the activation enthalpy (12.44 ${\pm}$ 0.20 kcal/mole) was independent of pH. Using the pH effect on the rate constants, the activation entropies and the activation volumes, the mechanism of the electron transfer reaction for $Co^{II}-Fe^{III}$ system was discussed.

  • PDF