• Title/Summary/Keyword: Reaction Wheels

Search Result 55, Processing Time 0.035 seconds

Torque and Force Measurement of a Prototype HAU Reaction Wheel and the Effect of Disturbance on the Attitude Stability of Spacecraft

  • Oh, Hwa-Suk;Kwon, Jae-Wook;Lee, Hyunwoo;Nam, Myung-Ryong;Park, Dong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.743-751
    • /
    • 2001
  • A Prototype reaction wheel, named the Hankuk Aviation University (HAU) reaction wheel, has been developed for KAISTSAT satellite series. Torque and force disturbances are inherent in reaction wheels, and thus the force and torque characteristics should be examined for every newly developed reaction wheel. The torque and force disturbance noises in the prototype HAU reaction wheel are measured with a torque-measuring table developed for the present study. A new measuring procedure based on a simple principle is applied for the measurements. The frequency characteristics of the torque and force noises are analyzed by examining the power spectral density. The effect of the torque noise on the attitude stability is also examined through numerical simulations with a single-axis attitude model. The noise-induced attitude error and jitter and found to be well below the specified error limits for the KAISTSAT satellite series.

  • PDF

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.

Least Squares Based PID Control of an Electromagnetic Suspension System

  • Park, Yon-Mook;Nam, Myeong-Ryong;Seo, In-Ho;Lee, Sang-Hyun;Lim, Jong-Tae;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2252-2257
    • /
    • 2003
  • In this paper, we develop the so-called functional test model for magnetic bearing reaction wheels. The functional test model has three degree of freedom, which consists of one axial suspension from gravity and the other two axes gimbaling capability to small angle, and does not include the motor. For the control of the functional test model, we derive the optimal electromagnetic forces based on the least squares method, and use the proportional-integral-derivative controller. Then, we develop a hardware setup, which mainly consists of the digital signal processor and the 12-bit analog-to-digital and digital-to-analog converters, and show the experimental results.

  • PDF

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Control Allocation of Reaction Wheels for Maximum Torque Generation (반작용 휠의 최대 가용 토크 분배법칙)

  • Choi, Yoon-Hyuk;Lee, Hen-Zeh;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.651-657
    • /
    • 2008
  • A new approach for maximizing torque capability of low efficient reaction wheel assembly is addressed in this paper. At first, to find out a solution in constrainted field, weighted pseudo-inverse and momentum minimized allocation are suggested instead of a general control allocation called pseudo-inverse. The second method is a structural manner to enlarge torque capability of specific axis by changing installed skew angle of wheels. Two proposed methods are applied to large angle maneuvers of satellite. Improvement of control performance and feasibility for applying to commercial satellite attitude control are demonstrated by numeric simulations.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

Design of Fault Isolator of Satellite Reaction Wheel System Using Dual Filter and Multi-hypothesis Extended Kalman Filter (이중 필터와 다중 가설 확장 칼만 필터를 적용한 인공위성 반작용 휠의 고장 분리기 설계)

  • Choi, Kwang-Rok;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1225-1231
    • /
    • 2009
  • One reaction wheel cluster of satellite usually has four reaction wheels. Each wheel is not arranged parallel to the attitude axis of satellite. Therefore, if one reaction wheel is broken, it is very hard to isolate the fault except using the sensors of wheel itself. In this paper, the isolator of satellite reaction wheel cluster is designed. Using a dual filter, FDP(Fault Detection Parameter) is made to detect fault, and using a multi-hypothesis extended Kalman filter, fault isolation of wheel cluster is done. We verify the improvement of isolation performance of wheel cluster by simulation with 4-reaction wheel cluster.

Highly Agile Actuator Development Status of an 800 mNm Control Moment Gyro (CMG)

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Young-Ho Shin;Eunji Lee
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.322-332
    • /
    • 2023
  • Satellite attitude-control actuators are equipped with a reaction wheel for three-axis attitude control. The reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are not used. Therefore, three-axis attitude control of a small satellite is possible using a reaction wheel, but this method is not suitable for missions that require rapid attitude control at a specific time. As a technology to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in wide use as a rapid attitude-control actuator in space satellites. The CMG has an internal gimbal mounted at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small satellite, and here we share the development status of an 800 mNm CMG.

Real Time Balancing Control of 2 Wheel Robot Using a Predictive Controller (예측 제어기를 이용한 2바퀴 로봇의 실시간 균형제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.11-16
    • /
    • 2014
  • In this paper, the two-wheels robot using a predictive controller to maintain the balance of the posture control in real time have been examined. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. The objective of this research was to design and implement a self-balancing algorithm using the dsPIC30F4013 embedded processor. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this study, the disturbance of the posture for the asymmetrical propose to overcome the predictive controller which was a problem in the control of a remote system by introducing the two wheels of the robot controller and the linear prediction of the system controller combines the simulation was performed. Also, the robust characteristic for realizing the goal of designing a loop filter too robust controller is designed so that satisfactory stability of the control system to improve stability of the system to minimize degradation of performance was confirmed.

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.