DOI QR코드

DOI QR Code

Real Time Balancing Control of 2 Wheel Robot Using a Predictive Controller

예측 제어기를 이용한 2바퀴 로봇의 실시간 균형제어

  • Received : 2014.02.12
  • Accepted : 2014.02.25
  • Published : 2014.03.31

Abstract

In this paper, the two-wheels robot using a predictive controller to maintain the balance of the posture control in real time have been examined. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. The objective of this research was to design and implement a self-balancing algorithm using the dsPIC30F4013 embedded processor. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this study, the disturbance of the posture for the asymmetrical propose to overcome the predictive controller which was a problem in the control of a remote system by introducing the two wheels of the robot controller and the linear prediction of the system controller combines the simulation was performed. Also, the robust characteristic for realizing the goal of designing a loop filter too robust controller is designed so that satisfactory stability of the control system to improve stability of the system to minimize degradation of performance was confirmed.

본 논문은 예측제어기를 이용하여 2휠 로봇의 실시간 균형을 유지할 수 있는 자세 제어에 대해 연구하였다. 또한 역방향 진자 제어는 로봇이 진행하는 동안 균형을 유지하기 위하여 도입되었다. 본 논문에서 구현에 사용한 프로세서는 dsPIC30F4013 임베디드 프로세서이며 자체 균형 알고리즘을 설계하고 구현 하는 것이다. 본 연구에서 ARS는 2축의 자이로 각(roll, pitch)과 3축의 가속도계 값(x, y, z)값으로 자세를 계산하도록 하였다. 따라서 본 연구에서는 외란에 대한 자세의 불균형을 극복하기 위한 예측제어기를 제안했으며 이를 원격 시스템의 제어문제에 도입하여 2바퀴 로봇의 선형 제어기와 예측제어기를 결합한 시스템의 시뮬레이션을 수행하였다. 또한 강인한 특성을 실현하기 위해 목표 필터루프를 설계하고 강인도-안정성을 만족하는 제어기를 설계하므로 제어시스템의 안정성을 향상시키고 시스템의 성능의 저하를 최소화함을 확인하였다.

Keywords

References

  1. Kang Jin Gu, "Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum," Journal of the The Korea Society of Computer and Information, Vol. 16, NO. 7, pp. 157-163, 2011. https://doi.org/10.9708/jksci.2011.16.7.157
  2. R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Diftler, I. Spain, and N. Radford "Mobile Manipulation using NASA's Robonaut," IEEEICRA, pp. 2104-2109, 2004.
  3. Block, D., K. AAstroom, and M.Spong, "The Reaction Wheel Pendulum,"Synthesis Lectures on Control and Mechatronics, Morgan & Claypool Publishers, Princeton, NJ, 2007.
  4. K. N. Srinias and L. Behera, "Swing-up strategies for a reaction wheel pendulum,"Int. J. Syst. Sci., vol. 39, no. 12. 1165-1177, 2008. https://doi.org/10.1080/00207720802095137
  5. K. N. Srinias and L. Behera, "Swing-up strategies for a reaction wheel pendulum," Int. J. Syst. Sci., vol. 39, no. 12. 1165-1177, 2008. https://doi.org/10.1080/00207720802095137
  6. N. Shanmugathasan and R. D. Johnston, "Exploitation of Time Delays for Improved Process Control," International Journal of Control, Vol. 48, No. 3, pp. 1137-1152, 1988. https://doi.org/10.1080/00207178808906240
  7. Z. Q. Wang and S. Skogestad, "Robust control of time-delay systems using the Smith predictor," International Journal of Control, Vol. 57, No. 6, pp. 1405-1420, 1993. https://doi.org/10.1080/00207179308934454
  8. Jang Myung Lee, "Dynamic Modeling and Cooperative Control of a Redundant Manipulator Based on Decomposition," International Journal of KSME, Vol. 12, No. 4, pp. 642-658, 1998. https://doi.org/10.1007/BF02945724
  9. Hwa. R, Jae H. Park, Jang M, Lee, "Compensation of Time Delay Using Predictive Controller," Journal of the The institute of Electronics Engineers of Korea, Vol. 36, NO. 2, pp. 46-56, 1999.