• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,824, Processing Time 0.036 seconds

ANTIOXIDATIVE ACTIVITIES OF SOME DIETARY FIBERS DETERMINED BY AN NIR EMISSION SPECTROSCOPY

  • Suzuki, Nobutaka;Nagai, Takeshi;Tokunou, Kazunari;Mizumoto, Iwao;Matsuya, Hiroko;Yoda, Binkoh;Itami, Toshiaki;Takahashi, Yukinori;Kozawa, Akiya
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3102-3102
    • /
    • 2001
  • Constituents of several .representative seaweeds, such as wakame Undaria pinnatifida; hijikia Hizikia fusifome; and kombu Laminaria japonica, were found to have fairly large reaction rates determined by quenching experiments of emission spectra in the near-infrared region (1max: 1270 nm) from singlet oxygen (102). Emission spectra of singlet oxygen generated from an aqueous solution of Rose Bengal under irradiation with a green laser (330 nm) were measured by a near-infrared (NIR) emission spectrometer constructed in our laboratory. The quenching experiments were as follows: Intensities of emission spectra were measured in the absence (I0) and in the presence of the seaweed constituents (I): Ratios of I0/I were plotted against every concentration of the quenchers (Stern-Volmer plots) which gives a straight line. The slope of each line gives a kqt value which gives a quenching constant kq value (an antioxidative constant against singlet oxygen) when the t value (half-life time of singlet oxygen in the solvent used) was given. The determined reaction rates are between 103-105 (g/l)-ls-1; the larger ones are as large as that of ascorbic acid, 8.4 ${\times}$ 104 (g/1)-ls-1. Most of these seaweed constituents also showed antioxidative activity against auto-oxidation and superoxide as well as their immunological enhancing activity. These results suggest a possibility that dietary fibers which are supposed to prevent the large-intestine cancer by their physical properties may prevent the cancer, at least in parts, by their chemical, antioxidative activity.

  • PDF

Removal Efficiency of Heavy Metals and Nutrients by Zeolite and Basic Oxygen Furnace Slag (제올라이트와 제강슬래그에 의한 중금속과 영양염류 복합오염물질의 제거 효과)

  • Kim, Yongwoo;Oh, Myounghak;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.13-19
    • /
    • 2014
  • Permeable reactive barrier has been recognized as the one of representative methods for remediation of contaminated groundwater. Reactive barrier system containing two and more reactive materials can remove multiple contaminants such as nutritive salts and heavy metals. In this study, removal efficiency of multiple contaminants was evaluated when both zeolite and basic oxygen furnace slag were used as reactive materials. Sequential batch test which consists of two materials was performed to evaluate removal efficiency comparing the reaction order of them against nutritive slats including ammonium and phosphate and heavy metal including cadmium. As a result, zeolite-basic oxygen furnace slag sequence batch test showed the best efficiency for removal of multiple contaminants including nutritive salts and heavy metal.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Studies on the oxygen-Atom-Transfer Reactions of Peroxo Vanadium(Ⅴ) Complexes (Peroxo Vanadium(Ⅴ)화합물들에 의한 산소 원자 전이 반응에 관한 연구)

  • Won, Tae Jin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.213-218
    • /
    • 2001
  • The reaction of peroxo vanadium(V) complexes, $VO(O_2)_2(pic)^{2-}$, $VO(O_2)(nta)^{2-}$, and $VO(O_2)(dipic)^-$ with thiolato-cobalt(III), $(en)_2Co(SCH_2CH_2NH_2)^{2+}$ resulted in an oxygen-atom transfer in aqueous solutions. Rate constants ($M^{-1}S^{-1}$) for these reactions were (35$\pm$1), $(4.8{\pm}0.4){\times}10^{-2}$ , and $(8.6{\pm}0.5){\times}10^{-4}$, respectively. The coordinate peroxide was activated in the oxygen-atom-transfer reaction of $VO(O_2)_2(pic)^{2-}$, but it is not the case for VO(O$_2$) $(nta)^{2-}$ and VO(O$_2$) $(dipic)^-$. In this paper, we proposed that the direct attack of an electrophilic peroxide to a nucleophilic substrate occurs in the oxygen-atom transfer pathway of peroxo vanadium(V) complexes.

  • PDF

Role of Active Oxygens on DNA Damage by Low Molecular Carbonyl Compounds Derived from Maillard Reaction (Maillard 반응에서 유래되는 저분자 Carbonyl 화합물의 DNA손상작용에 대한 활성산소종의 역할)

  • 김선봉;박성준;강진훈;변한석;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.565-570
    • /
    • 1990
  • The role of the active oxygens on plasmid DNA damage by carbonyl compounds derived from Maillard reaction was investigated. Plasmid DNA extracted from E. coli Hb1O1 was reacted with carbonyl compounds, such as glyoxal, methyl glyoxal, dihydroxyacetone, diacetyl, glyceraldehyde, glycolaldehyde and furfural with and without the active oxygen scavengers at 37$^{\circ}C$ for 6 hours, and then the degree of damage was determined by using 1 % agarose gel electro-phoresis. All of the carbonyl compounds except furfural caused to damage of DNA. Among these, glyoxal, methyl glyoxal and dihydroxyacetone markedly induced the damage of DNA. On the other hand, the DNA damage by the carbonyl compounds was greatly inhibited by catalase, superoxide dismutase and $\alpha$-tocopherol it is considered that the damage of DNA is due to active oxygens, such as singlet oxygen, hydrogen peroxide and superoxide anion generated during the autoxidation of carbonyl compounds.

  • PDF

Kinetics of the Oxidation of Carbon Monoxide on NiO at Low Temperature (저온 일산화탄소의 산화반응속도론적 연구)

  • Choi, Jae-Shi;Kim, Keu-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 1974
  • The catalytic reaction between carbon monoxide and oxygen was investigated in the presence of catalysts which were specially treated by applying an annealing method at different monoxide and oxygen and at reaction temperatures in the region of partial pressures of carbon $40^{\circ}C$ to $95^{\circ}C$. The oxidation rate is highest on NiO annealed at low temperature in vacuum. The data has been correlated with the first order kinetics, and the activation energies from the Arrhenius equation are found to be 4Kcal/mole in the region of the experimental temperatures. The excess oxygen in NiO obtained from the decomposition of $NiCO_3$does not cause activation at $95^{\circ}C$. But NiO catalysts annealed again in vacuum display activation even at $40^{\circ}C$. The quantity of the excess oxygen in NiO surfaces seems to be the controlling factor in determining the rates of oxidation of carbon monoxide.

  • PDF

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Simulation Study of Capacitively Coupled Oxygen Plasma with Plasma Chemistry including Detailed Electron Impact Reactions (전자충격반응을 포함하는 플라즈마 화학반응을 고려한 용량결합형 산소플라즈마의 전산모사 연구)

  • Kim, Heon Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.711-717
    • /
    • 2011
  • Two dimensional simulation results of a capacitively coupled oxygen plasma in a cylindrical reactor geometry are presented. Detailed electron impact reaction rates, which strongly depend on electron energy, are computed from collision cross sections of electrons with $O_2$ and O. Through the coupling of a three moment plasma model with a neutral chemistry/transport model are predicted spatiotemporal distributions of both charged species (electron, $O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) and neutral species including ground states ($O_2$ and O) and metastables, known to play important roles in oxygen plasma, such as $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, and $O(^1S)$. The simulation results clearly verify the existence of a double layer near sheath boundaries in the electronegative plasma.