Journal of the Korean Chemical Society 2001, Vol. 45, No. 3 Printed in the Republic of Korea

Peroxo Vanadium(V) 화합물들에 의한 산소 원자 전이 반응에 관한 연구

元泰軫

창원대학교 자연과학대학 화학과 (2001. 3. 29 집수)

Studies on the Oxygen-Atom-Transfer Reactions of Peroxo Vanadium(V) Complexes

Tae-Jin Won

Department of Chemistry, Changwon National University, Changwon 641-773, Korea (Received March 29, 2001)

요 약. Peroxo-vanadium(V) 화항불인 VO(O₂)₂(pic)²⁻와 VO(O₂)(nta)²⁻ 그리고 VO(O₂)(dipic)³⁺ pH 4.0의 수용액 안에서 thiolato-cobalt(III) 화합물인 (en)₂Co(SCH₂CH₂NH₂)²⁺와 산소 원자 전이 반응을 일으킨 다. 이들의 산소 원자 전이 반응에서 각각 (35-1)와 (4.8-0.4)×10⁻² 그리고 (8.6±0.5)×10⁻⁴의 속도상수(M⁻¹s⁻¹) 를 얻었다. VO(O₂)₂(pic)² 에 배위되어 있는 peroxide는 산소 원자 전이 반응에서 활성화되어지나 VO(O₂) (nta)²⁻와 VO(O₂)(dipic)⁻에 배위되어 있는 peroxide는 물활성화된다. 우리는 이 논문에서 peroxo vanadium (V) 화합물의 산소 원자 전이의 반응 경로는 친전자성의 peroxide 리간드가 친핵성의 substrate와 직접적인 반응에 의하여 이루어진다고 제안하였다.

ABSTRACT. The reaction of peroxo vanadium(V) complexes, $VO(O_2)_2(pic)^2$, $VO(O_2)(nta)^2$, and $VO(O_2)$ (dipic) with thiolato-cobalt(III), (en)₂Co(SCH₂CH₂NH₂)²⁺ resulted in an oxygen-atom transfer in aqueous solutions. Rate constants (M⁻¹s⁻¹) for these reactions were (35±1), (4.8±0.4) · 10⁻², and (8.6±0.5) · 10⁻⁴, respectively. The coordinate peroxide was activated in the oxygen-atom-transfer reaction of $VO(O_2)_2(pic)^2$, but it is not the case for $VO(O_2)(nta)^2$ and $VO(O_2)_2(dipic)$. In this paper, we proposed that the direct attack of an electrophilic peroxide to a nucleophilic substrate occurs in the oxygen-atom transfer pathway of peroxo vanadium(V) complexes.

서 론

Group V. VI. VII에 속한 전이 금속들 중에서 d" 의 전자 배치를 갖고있는 금속 이온들은 수용액 안에 서 과산화수소와 빠르게 반응하여 peroxo transition metal 화합물을 형성한다.¹⁴ 일반적으로 peroxo 화합물 들은 오각쌍뿔의 구조를 갖는 7배위 화합물로 하나의 oxo group과 하나 또는 두개의 side-on 형태의 peroxide 를 갖고 있다.

그리고 나머지의 배위 자리에는 용매 또는 첨가된 mono- 또는 multidentate 리간드가 결합한다. 금속에

배위된 peroxide는 친적자성이며 친핵성의 substrate와 산화 반응을 일으킨다고 알려져 있다.⁵⁶ Peroxo transition metal 화합물의 반응성은 peroxide가 결합되어 있는 금속 이온의 종류에 따라 크게 변하며, 몇몇 금 속 이온들은 결합된 peroxide를 활성화시켜 자유로운 peroxide 형태인 H₋O₋에 의한 산화 반응보다 더 빠른 반응을 일으킨다. 7족의 Re(VII)와 6족의 W(VI)의 peroxo 화합물인(CH₄)ReO₂(O₂)와 WO(O₂)₂(H₂O)는 peroxo 화합물들 중에서 가장 빠른 산화 반응을 일으 기는 화합물로 알려져 있으며, Mo(VI)의 peroxo 화합 물들도 빠른 산화 반응을 보인다.¹⁰⁰ 발암 물질로 알려 진 Cr(VI)도 H₂O₂와 반응하여 peroxo chromium(VI) 화 합물을 형성하나, 이들은 수용액 안에서 불안정하여 형 성과 동시에 분해되기 시작하는 것으로 알려져 있다.^{11,12} 5족의 V(V)를 포함하는 peroxo 화합물의 경우 다른 peroxo transition metal 화합물에 비하여 수용액 안에 서 상대적으로 안정한 화합물을 형성하며 또한 인슐린 의 보방체(insulin-mimic)로 알려져 있다.^{13,15} 인슐린 모방체의 가능성을 가진 peroxo 화합물인 VO(O₂) (nta)²는 biological thio의 하나인 cystine과의 반응 을 통하여 cysteine의 산화된 형태인 cystine을 형성한 다고 보고되었다.¹⁶

본 연구에서는 인슐린 모방체로 알려진 VO(O₂), (pie)²⁺와 VO(O₂)(dipie)⁺ 그리고 인슐린 모방체로의 가 능성을 갖고 있는 VO(O₂)(nta)²의 thiolato-cobalt(III) 화합물과의 산소 원자 전이 반응에 대하여 속도론적 실헊을 통하여 비교 연구하였다(pic-picolinic acid. dipie=2.6-pyridinedicarboxylic acid, nta=nitrilotriacetic acid), 이 연구로부터 hetero 리간드의 종류와 peroxide 리간드의 수가 이들 반응에 어떠한 영향을 미치는지를 관찰하였으며, 이 결과들로부터 가능한 산소 원자 전이 의 반응 경로를 제안하였다. 일반적으로 이들 peroxo transition metal 화합물에 의한 산소 전이의 반응 경 로는 명확히 알려져 있지 않으나. 금속 이온에 배워된 peroxide가 substrate와 직접 반응하는 경우와 substrate가 peroxide와 반응하기 전에 중심 금속에 결합 하는 형태의 두 가지의 반응 경로가 예측되어진다. 또 한 인슐린 모방체로 작용하지 않는 다른 전이 금속의 peroxo 화합물과 반응속도론적으로 어떠한 차이를 보 이는지를 비교 관찰하였다. 이 실험에서 산소 원자를 수용하는 substrate로 사용된 thiolato-cobalt(III) 화합 불은 산소 원자 전이 반응의 연구에 아주 유용한 substrate로서 이들은 H₂O₂에 의하여 산화되어 sulfenatocobalt(III)를 형성한다.⁷

반응 전과 후의 cobalt 화합물은 각기 다른 파장에 서 매우 큰 흡광 계수를 갖고 있으므로, 반응 경과 및 반응 결과물의 확인이 아주 용이하다. 부과적으로 수용액 안에서 매우 불안정한 tetraperoxo vanadium(V). V(O₂),⁴의 thiolato-cobalt(III) 화합물과의 반응이 징성 적으로 관찰되었다. 이 연구는 tetraperoxo transition metal 화합물의 반응성에 대한 첫 번째 연구 결과로서 현재까지 문헌에 보고된 적이 없었다.

실 험

시약 및 기기, 사용된 시약들, V_iO₂, Co(ClO₁), 211₂O, ethylenediamine, picolinic acid, 2.6-pyridinedicarboxylic acid, nitrilotriacetic acid 등은 Aldrich에서 구입하여 장제없이 사용하였다, 본 연구에서는 UV-vis 분광기로 Shimadzu UV-2401PC가 사용되었다.

K₂[VO(Q₂)(nta)]의 합섬.¹⁶ V₂O₂(2g)와 KOH(4g) 를 20 ml의 물에 넣고 약 70 ℃로 가열하여 투명한 연한 초록색의 용액이 언어졌다. 이 용액에 nitrilotriacetic acid(4.2g)를 조금씩 첨가하면 진한 청녹색의 용액으로 변하였다. 이 용액을 얼음물 속에서 약 2 ℃ 정도로 냉각하였다. 이 용액에 30%의 H₂O₂를 한 방 울썩 첨가하여 붉은 오랜지 색의 용액을 얻었다. 이 용액에 약 10 ml의 에탄올을 첨가하고 붉은 오랜지 색을 띠는 평면사각형의 결정이 형성될 때까지 약 5-6 일간 실온에서 증발시킨다. 언어진 결정은 에탄올로 세 척 후 건조시켰다.

K₂[VO(O₂)₂(pic)]의 합성.¹⁷ V₂O₂(3.6 g). KOH(6.0 g) 그리고 picolinic acid(5 g)를 60 ml의 중류수에 녹 였다. 이 용액을 약 2 ℃로 냉각시킨 후 약 30 ml의 H₂O₂(30 %)를 한 방울씩 첨가하였다. 약 2 ℃로 하루 정도 냉각시키면 도란색의 침전물이 형성된다. 이 침전 불을 에탄올과 에테르르 세척하여 건조시켰다.

K[VO(O₂)(dipic)(H₂O)]의 합성.¹⁸ 약 70 ℃의 증류 수(100 ml)에 V₂O₃(4.5 g)와 2.6-pyridinedicarboxylic acid(4.8 g)을 녹였다. 이 용액을 2 ℃ 정도로 냉각시킨 후 30% H₂O₂(3 ml)를 한방울씩 첨가하였다. 포화상태 의 KCl 용액을 붉은 색의 침전물이 생긴 때까지 서 서히 첨가하였다. 침전물이 형성되기 시작하면 침전물 의 형성이 완료될 때까지 약 2 ℃의 온도를 유지하였 다. 얻어진 침전물은 약 40 ℃의 물에 녹여 재결정시 킨 후 에탄올과 에테르로 세척한 후 건조시켰다. [(en)₂Co(SCH₂CH₂NH₂)](ClO₄)₂의 합성¹⁹ Thiolatocobalt(III) 화합물인 bis(ethylenediamine)(2-mercaptoethylamic-N.S)cobalt(III)는 Nosco와 Dentsch의 한 성법에 의하여 준비되어졌다. Co(ClO₄)₂·H₂O(15 g)을 증류수 60 ml에 녹인 후 약 30분동안 N₂ 기체로 bubbling 시켰다. 이 용액에 ethylenediamine(8.5 ml)을 친 친히 첨가하면 오렌지색의 침전물이 생긴다. 또 다른 비이키에 eystamine·211Cl(4.8 g)을 증류수 30 ml에 녹 이고 N₂ 기체로 30분간 bubbling하였다. 두 용액을 섞어서 30분간 N₂ 기체로 bubbling하였다. 두 용액을 섞어서 30분간 N₂ 기체로 bubbling시켰다. 이때 진한 HClO₄(7.5 ml)를 첨가하고 filtering시켰다. HClO₄(12 ml)를 추가로 filtrate에 침가하고 검정색 결정이 형성 될 때까지 약 2 °C로 냉각시켰다. 형성된 검정색 결정 은 에탄울로 세척 후 약 50 °C의 증류수에 녹여 제결 정시킨 후 건조시켰다.

[(en)₂Co(S{O}CH₂CH₂NH₂)]²'의 혐성²" Sulfenatocobalt(III) 화합불인 bis(ethylenediamine)(2-sulfenatoethylamine-N.S)cobalt(III)는 thiolato-cobalt(III) 화합물 의 수용액에 약 10배의 과산화수소를 반응시켜서 365 mm에서의 흡광도를 측정하여 결정하였다.

K₃[V(O₂)₄]의 합성.²¹ 본 실험에서는 분헌에서 사용 된 NaOH 대신 KOH를 사용하여 tetraperoxo vanadium (V)를 얻었다. V₂O₃(3 g)와 KOH(10 g)을 30 ml의 증 류수에 녹인 후 약 2℃ 정도로 냉각시켰다. 이 용액 에 H₂O₄(60 ml)를 서서히 첨가하면 전한 보라색의 용 액이 언어진다. 이 용액을 하루 정도 약 2℃ 정도로 유지시키면 진한 보라색의 침전물이 형성되었다. 이 침 전물을 기름증이로 기른 후 에탄울과 에테르로 세척한 후 건조시켰다.

속도론적 실험. 모든 속도론적 실험은 23 °C에서 pl1 4.0(0.01 M acetate buffer)의 완충용액 안에서 전 행되었다(V(O₂),³ 의 경우 0.01 M의 [OII]의 용액 안 에서 진행되었다). Peroxo vanadium(V) 화합물과 thiolatocobalt(III)의 반응은 생성물인 sulfenato-cobalt(III)의 형성을 365 nm에서 측정하였다. 본 연구에서는 initial rate method를 이용하여 흡광도의 변화를 측정하여 반 응속도상수를 구하였다."

결 과

pH 4.0의 수용액 안에 peroxo vanadium(V) 화합물. VO(O₂)<u>(</u>pic)² 와 VO(O₂)(nta)² 그리*과* VO(O₂)(dipic) 을 녹였을 경우, 이들은 상당히 안정하며 320 nm에서 440 nm 사이에서 흉광도를 갖는다. Thiolato-cobalt(III) 화합물은 이들 세 peroxo 화합물들에 의한 산소 원자 전이 반응을 통하여 sulfenato-cobalt(III) 화합물로 변 한다.

$$\begin{split} & \operatorname{Peroxo-V(V)} + \left[(en)_2 Co(SCH_2 CH_2 NH_2)\right]^2 & \rightarrow V(V) \text{-product} \\ & + \left[(en)_2 Co(S\{O\} CH_2 CH_2 NH_2)\right]^{2^{1/2}} \end{split}$$

일반적으로 sulfenato-cobalt(III) 화합물은 계속해서 sulfinato-cobalt(III) 화합물. (cn)₂Co(S{O})₂CH₂CH₂NH₃)²⁷ 로 산화되지만.²⁰ 이 반응 속도는 thiolato-cobalt(III)가 sulfenato-cobalt(III)로 산화되는 첫 번째 반응 속도에 비하여 상대적으로 매우 느리므로 무시되어질 수 있으 며 본 실험조건에서도 관찰되어지지 않는다. pl1 4.0의 수용액 안에서 thiolato-cobalt(III)와 sulfenato-cobalt(III) 화합물은 다음과 같은 홉광도를 갖는다: thiolato-Co(III) (283 nm. 11.700 M⁻¹cm⁻¹): sulfenato-Co(III)(365 nm. 6400 M⁻¹cm⁻¹): sulfenato-Co(III)(365 nm. 6400 M⁻¹cm⁻¹): fig. I에서와 같이. [peroxo-V(V)][thiolato-Co(III)] vs initial rate의 좌표는 직선을 나타내며 따 라서 이 산소 전이 반응은 peroxo vanadium(V)와 thiolato-cobalt(III)에 대하여 각각 1차 반응이다.

Fig. 1. The plots of [Peroxo-vanadium(V)][Thiolato-cobalt (III)] vs initial rate, inset: (A) $VO(O_2)(nta)^2$; (B) $VO(O_2)$ (dipic).

Table 1. The observed initial rates for reactions of peroxovanadium(V) and thiolato-cobalt(III) in Aqueous solutions

Peroxo-V(V) M	[Thiolato-Co(III)]/M	Initial rate Ms ⁴		
$[VO(O_2)(nta)]^2$				
1.03 10 5	1.00 10 4	$5.98 \cdot 10^{-9}$		
1.72 10 5	1.67 10 4	$1.24 \cdot 10^{-8}$		
3.09 10 ⁻⁵	3.00 10-4	3.88 10 ⁻⁸		
4.12 10 ⁻⁵	$4.00 \cdot 10^{-4}$	8.91 10 ⁻⁸		
5.15 10-5	5.00 10-4	1.19 10-		
$[VO(O_2)_i(pic)]^{2+}$				
0.85 10-4	0.27 10-4	4 .46 10 ⁻⁸		
1.82 10 ⁻⁴	$0.67 \cdot 10^{-4}$	3.90 10-		
1.97 10-4	1.33 10 ⁻⁴	8.26 10 ⁻⁷		
2.02 10-4	$2.00 \cdot 10^{-4}$	1.34 10-		
2.96 10 ⁻⁴	2.00 10 ⁻⁴	2.06 10-		
4.23 10 ⁻⁴	$2.00 \ 10^{-4}$	2.94 10-		
VO(O₂)(dipic)] [−]				
9.44 10-1	$8.02 \cdot 10^{-4}$	9.00 10-10		
1.60 10 3	$1.14 \cdot 10^{-3}$	1.96 · 10 °		
1.97 10 *	2.10 10 3	3.69 \ 10 9		
2.40 10 3	1.23 10 3	3.18 10 9		
2.40 10 3	1.85 10 3	$4.47 \cdot 10^{-9}$		
2.96 10 3	2.10 10 3	5.70 · 10 °		

experimenal conditions: pH 4.0 (0.01 M acetate buffer). T-23 °C

Table 1에서 세 peroxo 화합물들의 실험 조건과 초기 속도(initial rate)들을 나타내었다. 반응이 완결된 후 형성된 sulfenato-cobalt(III) 화합물의 yield는 365 nm 의 홉광도를 측정하여 결정되었으며 모두 90%이상이 얻어졌다.

[VO(O₂)₂(pic)]²의 반응. Bidentate 리간드인 pic와 두 개의 peroxide 리간드가 결합되어 있는 VO(O₂)₂ (pic)²는 pH 4.0의 수용액에 녹였을 때 328 mm에서 휴광도를 갖는다(ε₃₂₈ - 97.3 M⁻¹ cm⁻¹). VO(O₂)₂(pic)² 화합물은 Fig. 1에서와 같이 [VO(O₂)₂(pic)²][thilato-Co(III)] vs initial rate의 좌표에서 직선을 나타내며, 이 좌표의 기울기로부터(35-1)의 2차 속도 상수(M⁻¹ s⁻¹)를 인었다.

[**VO(O₂)(nta)]²의 반응.** Tetradentate 리간드인 nta 와 결합하고 있는 VO(O₂)(nta)²는 하나의 oxo와 peroxide가 결합되어 있는 monoperoxo 화합물로서 매 우 안정하여. 산성 및 중성의 수용액 안에서 15일 이 상 분해되지 않고 안정하게 존재한다. pH 4.0의 수용 액 안에서 VO(O₂)(nta)²는 429 nm에서 휴광도(ε₁₂₉- 340 M⁻¹cm⁻¹)를 나타내며 thiolato-Co(III) 화합물과의 반응에서(4.8±0.4)×10⁻²의 2차 속도 상수(M⁻¹s⁻¹)를 일 었다(*Fig.* 1(A)).

[**VO(O₂)(dipic)]⁻의 반응.** Tridentate 리간드인 dipic 이 결합되어 있는 이 monoperoxo 화항불은 oxo group 의 trans 위치에 11₂O 분자가 약하게 결합되어 있다. 이 화합물도 pH 4.0의 수용액 안에서 매우 안정하며 431 nm에서 330 M⁻¹em ¹의 휴광계수를 갖는다. *Fig.* 1(B)에서와 같이 thiolato-cobalt(III)와의 반응에서 [VO (O₂)(dipie)⁻][thiolato-Co(III)] vs initial rate의 좌표의 기울기로부터(8.7+0.5)×10⁻⁴의 2차 속도 상수(M⁻¹s⁻¹) 가 인어졌다.

[V(O₂)₄³ 의 반응. 이 화합물은 산성 및 약연기성의 수용액 안에서 매우 불안정하여 정확한 휴광계수를 인 지 못하였으나. 수용액의 염기성이 증가할수록 안정성 이 증가하여 560 nm에서 약 270 M⁻¹em⁻¹의 홉광 계 수를 얻었다([OH⁻] = 0.01 M). 염기성([OH⁻] = 0.01)의 수용액 안에서 V(O₂)₄³ 와 thiolato-cobalt(III) 화합물을 반응시켰을 때 365 nm에서 sulfenato-cobalt(III)의 형 성이 관찰되었다. 또한 과량의 thiolato-cobalt(III)의 형 분이 사용되었을 경우 형성된 sulfenato-cobalt(III) 화합 물이 사용되었을 경우 형성된 sulfenato-cobalt(III) 화 합물의 양은 사용된 V(O₂)₄³·양의 2배 이상이 얻어졌 다. 즉, 하나의 V(O₂)₄¹는 두 개 이상의 sulfenato-cobalt (III) 화합물을 형성한다. 그러나 이 반응의 속도른적 실험 결과의 분석은 중복된 동일 조건의 실혂에서 일 정한 값을 인지 못하였으며, 따라서 산소 원자 전이 반응의 속도 상수를 결정하는데 실패하였다.

고 찰

pH 4.0의 수용액 안에서 H₂O₂에 의한 thiolato-cobalt (III) 확합물의 산소 원자 전이 반응은 L2 M⁻¹s⁻¹의 속 도 상수를 갖는다.²⁴ 즉 diperoxo 확합불인 VO(O₂)₂ (pic)²⁻의 산소 전이 속도는 H₂O₂ 의한 반응보다 약 30 배 이상 빠르다. 12러나 monoperoxo 화합불인 VO(O₂) (nta)² 와 VO(O₂)(dipic)의 경우 H₂O₂보다 각각 20배 와 1000배 이상 드린 산소 원자 전이 반응이 관찰되 어진다. 따라서 본 연구의 결과만으로 볼 때. 금속이운 에 결합된 hetero 리간드의 종류뿐만 아니라 결합된 peroxide의 수도 peroxide 리간드의 활성화에 영향을 준다고 생각할 수 있다. 12러나 peroxo molybdenum (VI) 화합물의 경우, 결합된 peroxide 리간드의 활성화

Table 2. Comparison of rate constants for the oxidation of Thiolato-cobalt(III) by peroxo complexes of vanadium(V) and molybdenum(VI)

Peroxo type	Peroxo complex	Rate constant. M ⁻¹ s ⁻¹	Reference
Di	$[VO(O_z)_t(pic)]^2$	35	this work
Mono	$[VO(O_2)(nta)]^2$	4.8 ± 10^{-2}	this work
Mono	[VO(O ₂)(dipie)]	8.6×10^{-4}	this work
Di	$[MoO(O_i)_i(OH)]^-$	$2.4 - 10^3$	7
Mono	$[MoO(O_2)(nta)]^-$	$2.5 - 10^3$	10
Mono	[MoO(O ₂)(dipic)]	$8.7 - 10^2$	10
	H_2O_2	1.2	23

는 peroxide 리간드의 수와 hetero 리간드의 종류에 거의 영향을 받지 않는다. " 그러나 이 두 종류의 금 속 이온은 결합된 peroxide 리간드를 활성화시키는 등 력에서 큰 차이를 보인다. V(V)의 diperoxo 화항불의 경우 결합된 peroxide 리간드를 매우 약하게 활성화시 키지만, monoperoxo 화합물의 경우 금속 이온이 결합 되지 않은 자유로운 H₋O,보다 더 느린 반응을 보인다. 반면에 Mo(VI)의 경우 peroxide의 수와 hetero 리간 드의 종류에 영향을 받지 않고 H₂O₂보다 약 900배 이상 빠른 산소 전이 반응을 보인다. Table 2에서 이 들 두 금속 이온을 포함하고 있는 peroxo 화항물들의 산소 원자 전이 반응의 속도 상수를 비교하였다. 결합 된 peroxide를 강하게 활성화시키는 Mo(VI)의 경우 금속 이온에 의한 강한 활성화 능력 때문에 결합되어 있는 리간드들의 영향이 상대적으로 미약하여 반응 속 도에 큰 영향을 주지 못한다고 생각되어진다. V(V)의 경우 금속 이온에 의한 활성화 능력이 매우 약하기나 거의 없으므로, 결합되어 있는 리간드들의 종류가 전체 반응 속도에 영향을 미칠 수 있다. Peroxide가 친전자 성이므로 peroxide 리간드 수의 증가는 peroxo 화합 불의 친전자성을 증가시킨다. 또한 hetero 리간드인 nta와 dipic의 경우, dipic이 더 친핵적인 리간드이므로 nta 리간드를 갖고있는 peroxo 화합물이 더 강한 친전 자성을 갖는다. 또한 각 화합물의 전체 전하도 유전하 의 peroxo 화합물과 양전하의 thiolato-cobalt(III) 화합 물의 반응 속도에 영향을 줄 수 있다. 실제로 본 실 혐의 결과들은 정성적으로 위의 설명들과 일치함을 보 인다. 그러나 왜 각각의 금속 이온들이 다른 환성화 능력을 보이는지는 이 실험 결과만으로는 설명할 수 없었다.

Peroxo transition metal 화합물의 산소 전이에 대한 반응 경로는 서론에서 언급한 두 가지의 가능한 반응 경로를 예측할 수 있다.

첫 번째의 반응 경로(i)는 substrate가 peroxide와 반응하기 전에 금속 이온과 먼저 결합하는 반응으로. 반약 금속 이온이 빈 또는 약한 배위 자리를 갖고있 지 않을 경우 산소 전이 반응이 일어나지 않거나 상 대적으로 매우 느린 반응을 보일 것이다. 두 번째의 반응 경로(ii)는 친전자성의 peroxide 리간드가 친핵성 의 substrate와 직접 반응하는 경우로, 금속 이온 주위 의 빈 또는 약한 배위 자리가 존재하지 않더라도 산 소 전이 반응에 영향을 미치지 않을 것이다. VO(O₂) (nta)²는 빈 배위 자리를 갖고있지 않으며, 모든 배위 자리의 리간드들이 금속 이온에 강하게 결합되어 있는 화합불이다. 반면에 VO(O₂)(dipic)⁻는 oxo group의 trans 위치에 약하게 결합되어있는 H₂O 분자를 갖고 있다. 즉 하나의 빈 배위 자리를 갖고 있다. 따라서 (i)의 반응 경로를 따른다면 VO(O₂)(nta)²는 산소 전 이 반응을 일으키지 않거나 빈 배위자리를 갖고 있는 VO(O²)(dipic) 보다 느린 반응이 예측되어지나. 본 실 험 결과에서는 VO(O₂)(nta)²가 VO(O₂)(dipic) 보다 50 배 이상 빠른 반응을 보인다. 또한 diperoxo 화합불인 VO(O₂)₂(pic)² 도 빈 배위 자리를 갖고 있지 않으나 다른 두 peroxo 회합물보다 빠른 반응을 보인다. Peroxo vanadium(V) 화합물과 같은 구조를 갖고 있는 Mo(VI) 의 peroxo 화합물에서도, nta가 결합되어 있는 MoO(O₁) (nta)⁻ 화합물이 dipic이 결합되어있는 MoO(O₂)(dipic) 보다 약 3배 정도 빠른 반응을 보인다(Table 2). 즉 peroxo 화합물의 빈 배위 자리가 substrate와의 산소 적이 반응에 직접적인 영향을 주지 않는다는 것을 알 수 있다. 따라서 본 실험 결과로부터 perovo 화합물은 배워된 peroxide가 substrate와 직접적인 반응에 의하 여 산소 원자 전이 반응이 일어나는 두 번째(ii)의 반 응 경로가 예측되어진다.

Tetraperoxo 화합물인 V(O₂)¹의 경우, 네 개의

peroxide가 side-on 형태로 결합되어 있는 8배위의 dodecahedral 구조로 수용액 안에서 매우 불안정하다. 이 실험은 di 또는 monoperoxo 화합불과 다른 구조 의 tetraperoxo 화합불도 산소 원자 전이 반응을 통하 여 thiolato-cobalt(III) 화항물을 sulfenato-cobalt(III) 화합물로 변하게 하는 것을 확인하였다. 또한 V(O₂),³ 의 thiolato-cobalt(111) 화합물과의 반응과 자발적인 분 해에 의하여 560 mm에서의 V(O_), 3의 흡광도가 모두 사라진 후에도 계속해서 sulfenato-cobalt(III) 화합물의 형성이 관찰되었다. 이것은 첫 번째 산화 반응 후 형 성될 것으로 예측되는 triperoxo 화합물이나 diperoxo 화합물들의 계속적인 산화반응 때문으로 예측된다.²¹ Tetraperoxo 화합물과 thiolato-cobalt 화합물의 속도론 적 실험 결과의 분석을 단순하지 않게 반드는 요인은. 아마도 tetraperoxo 화합물의 수용액 안에서의 불안장 성과 분해 과장에서 형성될 수 있는 다른 peroxo 화 합물들의 substrate와의 연속적인 산화 반응으로 추측 된다.

본 연구로부터 인슐림 모방체 또는 인슐린 모방체로. 서의 가능성을 갖고 있는 peroxo vanadium(V) 화합 물들은 전에 보고된 전자 전이 반응뿐만¹⁶ 아니라 산 소 원자 전이 반응을 통하여 산화반응을 일으킨다는 것을 알 수 있었으며, 이 반응은 금속 이온에 배워되 어있는 peroxide가 substrate로 직접적인 공격에 의하 여 일어난다는 것을 알 수 있었다. 그리고 인슐린 모 방체인 peroxo vanadium(V) 화합물은 group VI와 VII에 속한 전이 금속들의 peroxo 화합불(noninsulinmimie)보다 속도론적으로 매우 느린 산화 반응을 보인 다. 따라서 이들 peroxo vanadium(V) 화합물들의 수 용액 안에서의 반응 경로 빛 리간드들의 영향 그리고 반응 속도에 관한 연구는 바나늄을 포함한 새로운 인 술린 모방체의 개발에 매우 중요하며, 또한 현재까지 명확하게 알려져 있지 않은 이들 인슐린 모방체의 생 체 안에서의 반응 경로는 아마도 이 화합물들의 산화 능력 및 반응 속도가 중요한 역할을 할 것으로 추측 된다.

인 용 문 헌

- Connor, J. A.; Ebsworth, E. A. V. Adv. Inorg. Chem. Radiochem. 1964, 6, 279.
- Mimoun, H. In The Chemistry of Peroxides, Patai, S., Ed.: Interscience: New York, 1983; p 463.
- 3. Dickman, M. H.: Pope, M. T. Chem. Rev. 1994, 94, 569.
- Butler, A.; Clague, M. J.; Meister, G. E. Chem. Rev. 1994, 94, 625.
- 5. Mimoun, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 734.
- Mimoun, H.: Mignard, M.: Brechot, P.; Saussine, L. J. Am. Chem. Soc. 1986, 108, 3711.
- Ghiron, A. E.: Thompson, R. C. *Inorg. Chem.* 1988, 27, 4766.
- Schwane, L. M.: Thompson, R. C. Inorg. Chem. 1989, 28, 3938.
- Huston, P.: Espenson, J. H.; Bakae, A. Inorg. Chem. 1993, 32, 4517.
- Won, T. J.; Sudam, B. M.; Thompson, R. C. Inorg. Chem. 1994, 33, 3804.
- Funahashi, S.; Uchida, F.; Tanaka, M. Inorg. Chem. 1978, 17, 2783.
- 12. Witt, S. N.; Hayes, D. M. Inorg. Chem. 1982, 21, 4014.
- Kodota, S.; Fantus, I. G.; Deragon, G.; Guyda, H. J.; Hersh, B.; Posner, B. I. *Biochim. Biophys. Res. Commm.* **1987**, *147*, 259.
- 14. Shaver, A.; Ng, J. B.; Hall, D. A.; Lum, B. S.; Posner, B. I. *Inorg. Chem.* **1993**, *32*, 3109.
- Posner, B. L. Faure, R.: Burgess, J. W.: Bevan, A. P.: Lachance, D.: Zhang-Sun, G.: Fantus, I. G.: Ng, J. B.: Hall, D. A.: Lum, B. S.: Shaver, A. J. Biol. Chem. 1994, 269, 4596.
- 16. Won, T. J. J. Korean Chem. Soc. 2000, 44, 1.
- 17. Quilizsch, U.: Wieghardt, K. Inorg. Chem. 1979, 18, 869.
- 18. Wieghardt, K. Inorg. Chem. 1978, 17, 57.
- 19. Nosco, D. L.; Deutsch, F. Inorg. Synth. 1982, 21, 859.
- Adzamali, I. K.; Libson, K.; Lydon, J. D.; Elder, R. C.; Deutsch, E. *Inorg. Chem.* **1979**, *18*, 303.
- Won, T. J.: Barnes, C. L.: Schlemper, E. O.: Thompson, R. C. *Inorg. Chem.* **1995**, *34*, 4499.
- Espenson, J. H. Chemical Kinetics and Reaction Mechanisms; McGraw-Hill: New York, U.S.A., 1995; p.8.
- 23. Adzamli, I.; Deutsch, E. Inorg. Chem. 1980, 19, 1366.