Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.6.711

Simulation Study of Capacitively Coupled Oxygen Plasma with Plasma Chemistry including Detailed Electron Impact Reactions  

Kim, Heon Chang (Department of Chemical Engineering, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.22, no.6, 2011 , pp. 711-717 More about this Journal
Abstract
Two dimensional simulation results of a capacitively coupled oxygen plasma in a cylindrical reactor geometry are presented. Detailed electron impact reaction rates, which strongly depend on electron energy, are computed from collision cross sections of electrons with $O_2$ and O. Through the coupling of a three moment plasma model with a neutral chemistry/transport model are predicted spatiotemporal distributions of both charged species (electron, $O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) and neutral species including ground states ($O_2$ and O) and metastables, known to play important roles in oxygen plasma, such as $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, and $O(^1S)$. The simulation results clearly verify the existence of a double layer near sheath boundaries in the electronegative plasma.
Keywords
three moment model; capacitively coupled plasma; oxygen plasma; electron impact reaction; metastables;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. K. Park, J. B. Kim, and H. C. Kim, J. KSDET, 8, 59 (2009).
2 H. Mao, D. Wu, W. Wu, J. Xu, and Y. Hao, Nanotechnol., 20, 445304 (2009).   DOI   ScienceOn
3 S. Kim, C. Delker, P. Chen, C. Zhou, S. Ju, and D. B. Janes, Nanotechnol., 21, 145207 (2010).   DOI   ScienceOn
4 D. Hayashi and K. Kadota, Japan. J. Appl. Phys., 38, 225 (1999).   DOI
5 H. M. Katsch, T. Sturm, E. Quandt, and H. F. Dobele, Plasma Sources Sci. Technol., 9, 323 (2000).   DOI   ScienceOn
6 M. W. Kiehlbauch and D. B. Graves, J. Vac. Sci. Technol. A, 21, 660 (2003).
7 J. T. Gudmundsson, J. Phys. D : Appl. Phys., 37, 2073 (2004).   DOI   ScienceOn
8 H. C. Kim and V. I. Manousiouthakis, J. Vac. Sci. Technol., A, 16, 2162 (1998).   DOI   ScienceOn
9 H. C. Kim, Y. T. Sul, and V. I. Manousiouthakis, IEEE Trans. Plasma. Sci., 32, 399 (2004).   DOI   ScienceOn
10 W. L. Morgan and B. M. Penetrante, Comput. Phys. Commun., 58, 127 (1990).   DOI   ScienceOn
11 A. V. Phelps, JILA Information Center Report No. 28, University of Colorado, Boulder (1985).
12 E. Krishnakumar and S. K. Srivastava, Int. J. Mass Spectrom. Ion Processes, 113, 1 (1992).   DOI   ScienceOn
13 D. Rapp and D. D. Briglia, J. Chem. Phys., 43, 1480 (1965).   DOI
14 R. R. Laher and F. R. Gilmore, J. Phys. Chem. Ref. Data, 19, 277 (1990).   DOI
15 M Mcfarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 59, 6620 (1973).   DOI
16 R. E. Olson, J. R. Peterson, and J. Moseley, J. Chem. Phys., 53, 3391 (1970).   DOI
17 R. M. Snuggs, D. J. Volz, J. H. Schummers, D. W. Martin, and E. W. Mcdaniel, Phys. Rev. A: At., Mol., Opt. Phys., 3, 477 (1971).   DOI
18 F. C. Fehsenfeld, A. L. Schmeltekopf, H. I. Schiff, and E. E. Ferguson, Planetary and Space Science, 15, 373 (1967).   DOI   ScienceOn
19 F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 45, 1844 (1966).   DOI
20 W. H. Aberth and J. R. Peterson, Phys. Rev. A: At., Mol., Opt. Phys., 11, 158 (1970).
21 F V. A. Feoktistov, D. V. Lopaev, K. S. Klopovsky, and O. B. Popovicheva, J. Nucl. Mater., 200, 309 (1993).   DOI   ScienceOn
22 K. Masek, L. Laska, and T. Ruzicka, Czech. J. Phys. Sec. B, B28, 1321 (1978).
23 F. K. Schofield, Planetary and Space Science, 15, 643 (1967).   DOI   ScienceOn
24 M. Vialle, M. Touzeau, G. Gousset, and C. M. Ferreira, J. Phys. D: Appl. Phys., 24, 301 (1991).   DOI   ScienceOn
25 Y. Ichikawa, R. L. C. Wu, and T. Kaneda, J. Appl. Phys., 67, 108 (1990).   DOI
26 H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data and Nuclear Data Tables, 17, 177 (1976).   DOI
27 I. G. Kouznetsov, A. J. Lichtenberg, and M. A. Lieberman, J. Appl. Phys., 86, 4142 (1999).   DOI