• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.026 seconds

Anti-inflammatory Effects of Cnidium Rhizoma against Intracerebral Hemorrhage in Rats (천궁(川芎)의 뇌조직출혈 흰쥐 힝염증반응에 대한 연구)

  • Baek, Dong-Ha;Kim, Do-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Objectives : Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including cytokines, extracellular proteases, and reactive oxygen species. Cnidium Rhizoma effects the anti-inflammatory, antioxidant, suppression of the microglia activation and protection of the nerve cell injury. For this reason, we investigated the anti-inflammatory effects of water extracts of Cnidium Rhizoma on intracerebral hemorrhage (ICH). Method : ICH was induced by the stereotaxic intracerebral injection of bacterial collagenase type IV (0.23 $U/{\mu}{\ell}$, 0.1 ${\mu}{\ell}/min$) in Sprague-Dawley rats. We orally administrated once 3 hours after ICH, then 2 times at 24-hour intervals the water extracts of Cnidium Rhizoma (500 mg/kg), myeloperoxidase (MPO) was observed by using immunofluorescense and expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and microglia were observed by using immunohistochemistry. Results : Infiltration of MPO expressing neutrophil, expression of iNOS and TNF-${\alpha}$ and activated microglia were significantly reduced in peri-hematoma of the rats fed with water extracts of Cnidium Rhizoma. Conclusion : These results demonstrated that water extracts of Cnidium Rhizoma suppressed an inflammatory reaction through inhibition of MPO, iNOS and TNF-${\alpha}$ positive cell and activated microglia number in peri-hematoma of ICH-induced rats.

Development of catalyst-substrate integrated copper cobalt oxide electrode using electrodeposition for anion exchange membrane water electrolysis (전착법을 이용한 촉매-기판 일체형 구리 코발트 산화물 전극 개발 및 음이온 교환막 수전해 적용)

  • Kim, Dohyung;Kim, Geul Han;Choi, Sung Mook;Lee, Ji-hoon;Jung, Jaehoon;Lee, Kyung-Bok;Yang, Juchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • The production of hydrogen via water electrolysis (i.e., green hydrogen) using renewable energy is key to the development of a sustainable society. However, most current electrocatalysts are based on expensive precious metals and require the use of highly purified water in the electrolyte. We demonstrated the preparation of a non-precious metal catalyst based on CuCo2O4 (CCO) via simple electrodeposition. Further, an optimization process for electrodeposition potential, solution concentration and electrodeposition method was develop for a catalyst-substrate integrated electrode, which indicated the highly electrocatalytic performance of the material in electrochemical tests and when applied to an anion exchange membrane water electrolyzer.

Effect of Indirect Oxidation on the Design of Sewage/wastewater Reuse System with an Electrolysis Reactor (전기분해 반응조의 간접산화 효과가 하.폐수 재활용 시스템 설계에 미치는 영향)

  • Shin, Choon-Hwan
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • In this paper, we investigated the effect of an indirect oxidation zone in an electrolysis reactor that used Ti/$IrO_2$ as the anode and SUS 316L as the cathode. Based on our preliminary results, the electrolysis reactor was operated with pole plate interval of 6 mm, current density 1.0 $A/dm^2L$ and electrolyte concentration 15%. The removal efficiency, COD (chemical oxygen demand), was additionally increased by 55% and 12.5${\sim}$15.0% in the direct and indirect oxidation zones, respectively. The removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) were found to be 88% and 75%, respectively. It was shown that the additional effect of the indirect oxidation zone on the removal was nearly negligible. Also, as the removal of COD,T-N and T-P took place during the initial2${\sim}$5 days of reaction, it was concluded that there was no need to extend the retention time of the electrolysis reactor.

Theoretical Study on Structural Properties of Triptan Derivatives (트립탄 유도체의 구조적 특성에 관한 이론적 연구)

  • Chul Jae Lee;Ki Young Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.503-508
    • /
    • 2023
  • Tryptane derivatives are substances that treat acute migraines, and many studies have been conducted on analysis methods such as chromatography, electrochemistry, spectroscopy, and capillary electrophysiology. Recently, analytical chemists have become more interested in drug analysis and solving fundamental problems of biological importance. Therefore, in this study, the chemical properties of each derivative were investigated by calculating the total energy, band gap, electrostatic potential, and charge of Sumatriptan, Lizatriptan, Naratriptan, and Eletriptan using HyperChem8.0's semi-empirical PM3 method. As a result of this study, in the case of Sumatriptan, Naratriptan, and Eletriptan, chemical reactions are expected to proceed centering on oxygen and nitrogen atoms bonded to sulfur atoms. In addition, in the case of Rizatriptan without a sulfur atom, it was shown that the chemical reaction proceeds at the 17th and 19th nitrogens of the 5-membered heterocyclic compound.

Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석)

  • DONG HEE KIM;HYOEN SEUNG JUNG;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

Protective Effects of Nypa fruticans Wurmb against Oxidative DNA Damage and UVB-induced DNA Damage

  • So-Yeon Han;Tae-Won Jang;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.54-54
    • /
    • 2023
  • Nypa fruticans Wurmb (N. fruticans) is a plant that belongs to Araceae and N. fruticans is mainly found in tropical mangrove systems. The parts (leaves, stems, and roots) of N. fruticans are traditionally used for asthma, sore throat, and liver disease. N. fruticans contains flavonoids and polyphenols, which are substances that have inhibitory effects on cancer and oxidant. In previous studies, some pharmaceutical effects of N. fruticans on melanogenesis and inflammation have been reported. The present study is conducted to investigate the effect of the ethyl acetate fraction of N. fruticans (ENF) on oxidative DNA damage and UVB-induced DNA damage. DNA damage response (DDR) pathway is important in research on cancer, apoptosis, and so on. DDR pathways are considered a crucial factor affecting the alleviation of cellular damage. ENF could reduce oxidative DNA damage derived from reactive oxygen species by the Fenton reaction. Also, ENF reduced the intensity of intracellular ROS in the live cell image by DCFDA assay. UVB is known to cause skin and cellular damage, then finally contribute to causing the formation of tumors. As for the strategies of reducing DNA damage by UVB, inhibition of p53, H2AX, and Chk2 can be important indexes to protect the human body from DNA damage. As a result of confirming the protective effect of ENF for UVB damage, MMPs significantly decreased, and the expression of apoptosis-related factors tended to decrease. In conclusion, ENF can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage and UVB-induced DNA damage. These results are considered to be closely related to the protective effect against radicals based on catechin, epicatechin, and isoquercitrin contained in ENF. Based on these results, it is thought that additional mechanism studies for inhibiting cell damage are needed.

  • PDF

Formation and Inhibition of Cholesterol Oxidation Products (COPs) in Foods; An Overview (식품 내 콜레스테롤 산화 생성물(COPs)의 생성 및 억제; 개요)

  • Joo-Shin Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1163-1175
    • /
    • 2023
  • Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.

Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages

  • Rungthip Thongboontho;Kanoktip Petcharat;Narongsuk Munkong;Chakkraphong Khonthun;Atirada Boondech;Kanokkarn Phromnoi;Arthid Thim-uam
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.827-843
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS: The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS: Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p2phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS: Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.