Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.3.180

Development of catalyst-substrate integrated copper cobalt oxide electrode using electrodeposition for anion exchange membrane water electrolysis  

Kim, Dohyung (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Kim, Geul Han (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Choi, Sung Mook (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Lee, Ji-hoon (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Jung, Jaehoon (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Lee, Kyung-Bok (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Yang, Juchan (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.3, 2022 , pp. 180-186 More about this Journal
Abstract
The production of hydrogen via water electrolysis (i.e., green hydrogen) using renewable energy is key to the development of a sustainable society. However, most current electrocatalysts are based on expensive precious metals and require the use of highly purified water in the electrolyte. We demonstrated the preparation of a non-precious metal catalyst based on CuCo2O4 (CCO) via simple electrodeposition. Further, an optimization process for electrodeposition potential, solution concentration and electrodeposition method was develop for a catalyst-substrate integrated electrode, which indicated the highly electrocatalytic performance of the material in electrochemical tests and when applied to an anion exchange membrane water electrolyzer.
Keywords
Hydrogen production; Anion exchange membrane water electrolysis; Oxygen evolution reaction; Electrodeposition; Direct growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Momirlan, T. N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrog. Energy, 30 (2005) 795-802.   DOI
2 M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, Int. J. Hydrog. Energy, 46 (2021) 21261-21273.   DOI
3 Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y. Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts, Adv. Mater., 28 (2016) 3777-3784.   DOI
4 H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, J. M. Haack, Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions, Sustain. Energy Fuels, 4 (2020) 2114-2133.   DOI
5 P. Fortin, T. Khoze, X. Cao, S. Y. Martinsen, A. O. Barnett, S. Holdcroft, High-performance alkaline water electrolysis using AemionTM anion exchange membranes, J. Power Sources, 451 (2020) 227814.   DOI
6 J. Kai, R. Saito, K. Terabaru, H. Li, H. Nakajima, K. Ito, J. Electrochem. Soc., 166 (2019) F246-F254.   DOI
7 W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction, Nano Energy, 43 (2018) 110-116.   DOI
8 M. J. Jang, J. Yang, J. Lee, Y. S. Park, J. Jeong, S. M. Park, J. Y. Jeong, Y. Yin, M. H. Seo, S. M. Choi, K. H. Lee, Superior performacne and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction, J. Mater. Chem. A, 8 (2020) 4290-4299.   DOI
9 Y. S. Park, J. Yang, J. Lee, M. J. Jang, J. Jeong, W. S. Choi, Y. Kim, Y. Yin, M. H. Seo, Z. Chen, S. M. Choi, Superior performacne of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance, Appl. Catal. B: Environ., 278 (2020) 119276.   DOI
10 A. Yavuz, N. Ozdemir, P. Y. Erdogan, H. Zengin, G. Zengin, M. Bedir, Effect of electrodeposition potential and time for nickel film generation from ionic liquid electrolytes for asymmetric supercapacitor production, Thin Solid Films, 711 (2020) 138309.   DOI
11 Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lee, D. C. Lim, M. H. Seo, W. B. Kim, J. Yang, S. M. Choi, Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts, Appl. Catal. B: Environ., 292 (2021) 120170.   DOI
12 X. Li, Z. Kou, J. Wang, Manipulating interfaces of electrocatalysts down to atomic scales: Fundamentals, strategies, and electrocatalytic applications, Small Methods, 5 (2021) 2001010.   DOI