DOI QR코드

DOI QR Code

Development of catalyst-substrate integrated copper cobalt oxide electrode using electrodeposition for anion exchange membrane water electrolysis

전착법을 이용한 촉매-기판 일체형 구리 코발트 산화물 전극 개발 및 음이온 교환막 수전해 적용

  • Kim, Dohyung (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Geul Han (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Sung Mook (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Ji-hoon (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jung, Jaehoon (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Kyung-Bok (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Juchan (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
  • 김도형 (한국재료연구원 그린수소재료연구실) ;
  • 김글한 (한국재료연구원 그린수소재료연구실) ;
  • 최승목 (한국재료연구원 그린수소재료연구실) ;
  • 이지훈 (한국재료연구원 그린수소재료연구실) ;
  • 정재훈 (한국재료연구원 그린수소재료연구실) ;
  • 이경복 (한국재료연구원 그린수소재료연구실) ;
  • 양주찬 (한국재료연구원 그린수소재료연구실)
  • Received : 2022.06.20
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

The production of hydrogen via water electrolysis (i.e., green hydrogen) using renewable energy is key to the development of a sustainable society. However, most current electrocatalysts are based on expensive precious metals and require the use of highly purified water in the electrolyte. We demonstrated the preparation of a non-precious metal catalyst based on CuCo2O4 (CCO) via simple electrodeposition. Further, an optimization process for electrodeposition potential, solution concentration and electrodeposition method was develop for a catalyst-substrate integrated electrode, which indicated the highly electrocatalytic performance of the material in electrochemical tests and when applied to an anion exchange membrane water electrolyzer.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업 (과제번호:PJ016253)의 지원을 받아 수행된 연구임.

References

  1. M. Momirlan, T. N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrog. Energy, 30 (2005) 795-802. https://doi.org/10.1016/j.ijhydene.2004.10.011
  2. M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, Int. J. Hydrog. Energy, 46 (2021) 21261-21273. https://doi.org/10.1016/j.ijhydene.2021.04.016
  3. H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, J. M. Haack, Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions, Sustain. Energy Fuels, 4 (2020) 2114-2133. https://doi.org/10.1039/C9SE01240K
  4. X. Li, Z. Kou, J. Wang, Manipulating interfaces of electrocatalysts down to atomic scales: Fundamentals, strategies, and electrocatalytic applications, Small Methods, 5 (2021) 2001010. https://doi.org/10.1002/smtd.202001010
  5. P. Fortin, T. Khoze, X. Cao, S. Y. Martinsen, A. O. Barnett, S. Holdcroft, High-performance alkaline water electrolysis using AemionTM anion exchange membranes, J. Power Sources, 451 (2020) 227814. https://doi.org/10.1016/j.jpowsour.2020.227814
  6. Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lee, D. C. Lim, M. H. Seo, W. B. Kim, J. Yang, S. M. Choi, Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts, Appl. Catal. B: Environ., 292 (2021) 120170. https://doi.org/10.1016/j.apcatb.2021.120170
  7. J. Kai, R. Saito, K. Terabaru, H. Li, H. Nakajima, K. Ito, J. Electrochem. Soc., 166 (2019) F246-F254. https://doi.org/10.1149/2.0521904jes
  8. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction, Nano Energy, 43 (2018) 110-116. https://doi.org/10.1016/j.nanoen.2017.11.022
  9. Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y. Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts, Adv. Mater., 28 (2016) 3777-3784. https://doi.org/10.1002/adma.201506197
  10. M. J. Jang, J. Yang, J. Lee, Y. S. Park, J. Jeong, S. M. Park, J. Y. Jeong, Y. Yin, M. H. Seo, S. M. Choi, K. H. Lee, Superior performacne and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction, J. Mater. Chem. A, 8 (2020) 4290-4299. https://doi.org/10.1039/c9ta13137j
  11. Y. S. Park, J. Yang, J. Lee, M. J. Jang, J. Jeong, W. S. Choi, Y. Kim, Y. Yin, M. H. Seo, Z. Chen, S. M. Choi, Superior performacne of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance, Appl. Catal. B: Environ., 278 (2020) 119276. https://doi.org/10.1016/j.apcatb.2020.119276
  12. A. Yavuz, N. Ozdemir, P. Y. Erdogan, H. Zengin, G. Zengin, M. Bedir, Effect of electrodeposition potential and time for nickel film generation from ionic liquid electrolytes for asymmetric supercapacitor production, Thin Solid Films, 711 (2020) 138309. https://doi.org/10.1016/j.tsf.2020.138309