• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.037 seconds

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

A Study on Characteristics of Supports Materials for Durability Improvement of Electrocatalysts (전극촉매의 내구성 향상을 위한 지지체 특성 평가 연구)

  • JANG, JEONGYUN;YIM, SUNG-DAE;PARK, SEOK-HEE;JUNG, NAMGEE;PARK, GU-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.531-539
    • /
    • 2019
  • The development of cost-effective electrocatalysts with high durability is one of the most important challenges for the commercialization of polymer electrolyte fuel cells (PEFCs). The durability of the electrocatalyst has been studied in terms of structural change in the active metal and the support. In particular, in fuel cell vehicles, degradation of the carbon-based support is known to have a significant effect on the electrocatalyst deterioration since the start-up/shut-down cycle is frequently repeated. The requirements for the support of the electrocatalyst include high surface area, electrical conductivity, chemical stability, and so on. In this study, we propose the evaluation methods for choosing better support materials and present the physicochemical properties that promising carbon supports should have. Three kinds of carbon materials with different crystallinity are compared. From in-depth study using X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and accelerated stress test, it is clearly confirmed that the durability of carbon-supported electrocatalysts is closely related to the physicochemical properties of the carbon supports.

The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol (다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구)

  • Jeong, Tae-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo;Yoon, Byeng-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.179-185
    • /
    • 2000
  • In this study, we examined the movement of chlorophenol as a precursor of the dioxin in the after-combustion to minimize the creation and emission of dioxin in a municipal waste incinerator. The CPs was injected to the electric incinerator in temperature $300{\sim}500^{\circ}C$, using $N_2$ gas to control the reaction time, The oxygen quantity supplied into the $CP_s's$ isomer combustion was added with the value of experience formula. When the space velocity in reactor was 60~80/sec, the removal efficiency of CP was obtained in the presence of Mo-V catalyst and non catalyst. The efficiency in non-catalyst was 74% to 80% mono-CP, di-CP 55~66%, tri-CP 50~58%, while mono-CP 90~99.9%, di-CP 96~97%, tri-CP 76~99% in a catalyst. Consequently, it was shown that these were 20~30% more efficienct than those.

  • PDF

A Study on Designing Flash Hider to Shorten the Length of Small Arms (전장축소형 무화염 소염기 형상설계 연구)

  • Kim, Hyun-Jun;Lee, Joon-Ho;Chae, Je-Wook;Lee, Sung-Bae;Kim, In-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.979-985
    • /
    • 2011
  • This paper includes that there are results of designing the flash hider and analyzing fluid dynamics of a front area of the barrel to shorten the length of small arms. Generally, the muzzle flash can be generated out of the barrel by the reaction between the oxygen in the air and unburned gunpowder contained in the propellant gas if a barrel is not long enough to burn gunpowder fully inside of the barrel. Though, the hugh muzzle flash, which is a characteristic of small arms with short barrel length, caused a soldier to aim at the target at night by making the soldier blind for a while and endangers his life by revealing firing position to enemies. Besides, the heat of muzzle flash can weaken the performance of thermal sights, which are attached to small arms for night battlefield. In this paper, flash hiders with several different shapes were designed for a newly developed 5.56mm caliber rifle with short barrel length. The performance of each flash hider to reduce the muzzle flash was compared theoretically and experimentally. Through the authorized test procedure, a highly efficient design of flash hider for reducing the muzzle flash was identified. The result of the paper can be helpful when designing flash hiders for small arms with short barrel length.

High Temperature Oxidation Behavior of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 고온산화거동)

  • Ko J. H.;Lee D. B.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.360-365
    • /
    • 2004
  • Ti$_3$SiC$_2$ material was synthesized via the powder metallurgical route, and oxidation tested between 900 and $1200^{\circ}C$ in air for up to 100 hr. The oxidation of $Ti_3$$SiC_2$ material resulted in the formation of $TiO_2$and $SiO_2$, accompanying the evolution of CO or $CO_2$ gases from the initial stage of oxidation. The oxidation resistance of $Ti_3$$SiC_2$ mainly owes the protectiveness of highly stoichiometric $SiO_2$. During the initial stage of oxidation, the dominant reaction was the inward transport of oxygen into the matrix. As the oxidation progressed, an outer $TiO_2$ layer and an inner ( $TiO_2$ + $SiO_2$) mixed layer formed. Between these layers and inside the oxide scale, numerous fine voids formed. Numerous, fine oxide grains formed at $900^{\circ}C$ developed into the outer coarse $TiO_2$ grains and an inner fine ($TiO_2$ + $SiO_2$) mixed grains at the higher temperatures. The oxidation resistance of$ Ti_3$SiC$_2$ progressively deteriorated as the oxidation temperature increased, forming thick scales above $1000^{\circ}C$. The outer coarse $TiO_2$ grains formed above $1100^{\circ}C$ grew rapidly mainly along (211).

Cyclic voltammetry characteristics of $MnO_2$ electrode mixed with PVDF in sulfuric acid solution (PVDF로 혼합된 $MnO_2$ 전극의 황산 수용액중의 cyclic voltammetry 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Kim, Hyun-Sik;Lee, Hae-Yon;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.82-84
    • /
    • 2002
  • Dimensionally stable anode(DSA) can be used for the electrowinning of non-ferrous metal like as a Zn, and electrolysis of sea water. $MnO_2$ electrode satisfies the requirements of DSA, and has a good cycle life and a low overpotential for oxygen evolution. $MnO_2$ electrodes coated with DMF and PVDF based on Pb alloy produced at several compositions and dry temperatures. The viscosity of solvent used as a binder of $MnO_2$ powder increased with the increasing PVDF contents. When the ratio of PVDF to BMF with the 5 times dipping at the solution mixed with PVDF and DMF was 1/9, the coating thickness was $150{\mu}m$. When the ratio of PVDF to $MnO_2$ was lower than 1/6, the electrode didn't show any reaction irrespective of the concentrations of DMF. However, When the ratio of PVDF to $MnO_2$ was higher than 1/6, the electrode showed a constant current reactions and homogeneous cyclic voltammetry even though at a high cycle. The reason for the high current and homogeneous cyclic voltammetry is the good catalytic reactions of $MnO_2$ powder in electrode. The reactions of Pb electrode coated with $MnO_2$ and PVDF based on the pure Pb electrode.

  • PDF

Fabrication and dielectric properties of $LaAlO_3-BaZrO_3$ perovskites ($LaAlO_3-BaZrO_3$계 perovskites의 제조 및 유전특성)

  • Lee, So-Hee;Kim, Shin;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.325-325
    • /
    • 2007
  • The perovskites in the $LaAlO_3-BaZrO_3$ system (i.e., $(1-x)LaAlO_3-xBaZrO_3$ were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of $LaAlO_3$ with a rhombohedral structure and $BaZrO_3$ with a cubic was observed when the sintering was conducted at $1500^{\circ}C$, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between $La^{3+}$ ion (0.136nm, C.N.=12) and $Ba^{2+}$ ion (0.161nm) or $Al^{3+}$ ion (0.0535nm, C.N.=6) and $Zr^{4+}$ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of $BaZrO_3$, i.e., x value, which was in good agreement with the logarithmic mixing rule (In $_{r,i}={\Sigma}v_iln\;_{r,i}$). The increase in $BaZrO_3$ doping decreased $Q{\times}f$ value significantly due to the low $Q{\times}f$ value of $BaZrO_3$ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sub-lattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba on La-site or Al on Zr-site.

  • PDF

Protective Effect of Panax ginseng Ethanol Extracts Against Bisphenol A (BPA) in Mouse Male Germ Cells (마우스 수컷 생식세포에서 비스페놀 A에 대한 인삼 에탄올 추출물의 보호 효과)

  • Kim, Hyung Don;Shon, Sang Hyun;Kim, Jin Seong;Lee, Hee Jung;Park, Chun Geun;Ahn, Young Sup;Lee, Sang Won;Kim, Young Ock
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2',7'-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis-related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by $50{\mu}M$ BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPA-induced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.

Role of $N_2$ flow rate on etch characteristics and variation of line edge roughness during etching of silicon nitride with extreme ultra-violet resist pattern in dual-frequency $CH_2F_2/N_2$/Ar capacitively coupled plasmas

  • Gwon, Bong-Su;Jeong, Chang-Ryong;Lee, Nae-Eung;Lee, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.458-458
    • /
    • 2010
  • The process window for the etch selectivity of silicon nitride ($Si_3N_4$) layers to extreme ultra-violet (EUV) resist and variation of line edge roughness (LER) of EUV resist were investigated durin getching of $Si_3N_4$/EUV resist structure in a dual-frequency superimposed capacitive coupled plasma (DFS-CCP) etcher by varying the process parameters, such as the $CH_2F_2$ and $N_2$ gas flow rate in $CH_2F_2/N_2$/Ar plasma. The $CH_2F_2$ and $N_2$ flow rate was found to play a critical role in determining the process window for infinite etch selectivity of $Si_3N_4$/EUV resist, due to disproportionate changes in the degree of polymerization on $Si_3N_4$ and EUV resist surfaces. The preferential chemical reaction between hydrogen and carbon in the hydrofluorocarbon ($CH_xF_y$) polymer layer and the nitrogen and oxygen on the $Si_3N_4$, presumably leading to the formation of HCN, CO, and $CO_2$ etch by-products, results in a smaller steady-state hydrofluorocarbon thickness on $Si_3N_4$ and, in turn, in continuous $Si_3N_4$ etching due to enhanced $SiF_4$ formation, while the $CH_xF_y$ layer is deposited on the EUV resist surface. Also critical dimension (and line edge roughness) tend to decrease with increasing $N_2$ flow rate due to decreased degree of polymerization.

  • PDF

Phase Transformation and Luminescent Properties of Ca1-xSrxAl2O4:Eu2+ Phosphors ([Ca1-xSrxAl2O4:Eu2+] 형광체의 상전이 및 발광특성에 관한 연구)

  • Park, Yun-Jin;Song, Hyun-Don;Jung, Sang-Hyun;Lee, Jee-Hee;Hwang, Min-Ha;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The phase transformations and luminescent properties of Eu-doped $Ca_{1-x}Sr_xAl_2O_4$ phosphors were investigated. $Ca_{1-x}Sr_xAl_2O_4:Eu^{2+}$ phosphors were synthesized by a solid-state reaction with a flux, $H_3BO_3$. A phase transformation from monoclinic $CaAl_2O_4$ to monoclinic $SrAl_2O_4$ was observed as the x values increased. A high-temperature hexagonal phase of $SrAl_2O_4$ was formed during this transformation as an intermediate phase under an $H_2$ atmosphere due to oxygen vacancies; this did not occur in an air atmosphere. Accordingly, the emission spectra shifted from a blue region to a green region as x increased.