Browse > Article

High Temperature Oxidation Behavior of Ti$_3$SiC$_2$  

Ko J. H. (성균관대학교 신소재공학과)
Lee D. B. (성균관대학교 신소재공학과)
Publication Information
Journal of the Korean institute of surface engineering / v.37, no.6, 2004 , pp. 360-365 More about this Journal
Abstract
Ti$_3$SiC$_2$ material was synthesized via the powder metallurgical route, and oxidation tested between 900 and $1200^{\circ}C$ in air for up to 100 hr. The oxidation of $Ti_3$$SiC_2$ material resulted in the formation of $TiO_2$and $SiO_2$, accompanying the evolution of CO or $CO_2$ gases from the initial stage of oxidation. The oxidation resistance of $Ti_3$$SiC_2$ mainly owes the protectiveness of highly stoichiometric $SiO_2$. During the initial stage of oxidation, the dominant reaction was the inward transport of oxygen into the matrix. As the oxidation progressed, an outer $TiO_2$ layer and an inner ( $TiO_2$ + $SiO_2$) mixed layer formed. Between these layers and inside the oxide scale, numerous fine voids formed. Numerous, fine oxide grains formed at $900^{\circ}C$ developed into the outer coarse $TiO_2$ grains and an inner fine ($TiO_2$ + $SiO_2$) mixed grains at the higher temperatures. The oxidation resistance of$ Ti_3$SiC$_2$ progressively deteriorated as the oxidation temperature increased, forming thick scales above $1000^{\circ}C$. The outer coarse $TiO_2$ grains formed above $1100^{\circ}C$ grew rapidly mainly along (211).
Keywords
Ti$_3$SiC$_2$; Oxidation; Ti$_3$; SiC$_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. W. Barsoum, T. EI-Raghy, L. U. J. T. Ogbuji, J. Electrochem. Soc., 144 (1997) 2508   DOI   ScienceOn
2 Z. Sun, Y. Zhou, M. Li, Corros. Sci., 43 (2001) 1095   DOI   ScienceOn
3 Z. Sun, Y. Zhou, M. Li, Acta Mater., 49 (2001) 43-47
4 C. Racault, F. Langlais, R. Naslain, J. Mater. Sci., 29 (1994) 33-84   DOI   ScienceOn
5 S. B. Li, L. F. Cheng, L. T. Zhang, Comp. Sci. Tech., 63 (2003) 813   DOI   ScienceOn
6 S. L. Yang, Z. M. Sun, H. Hashimoto, Y. H. Park, T. Abe, Oxid. Met., 59 (2003) 155
7 S. B. Li, L. F. Cheng, L. T. Zhang, Mater. Sci. Eng., A341 (2003) 112
8 M. W. Barsoum, L. H. Ho-Duc, M. Radovic, T. EI-Raghy, J. Electrochem. Soc., 150 (2003) B166   DOI   ScienceOn
9 A. Feng, T. Orling, Z. A. Munir, J. Mater. Res., 14 (1999) 925   DOI   ScienceOn
10 N. F. Gao, Y. Miyamoto, D. Zhang, Mater. Let., 55 (2002) 61
11 Y. M. Chiang, D. P. Birnie III, W. D. Kingery, Physical Ceramics, John Wiley & Sons, NY, (1996) 109
12 R. Radhakrishnan, J. J. Williams, M. Akinc, J. Alloys Comp., 285 (1999) 85   DOI   ScienceOn
13 P. Kofstad, Oxid. Met., 44 (1995) 3
14 G. M. Liu, M. S. Li, Y. Zhang, Y. C. Zhou, Mater. Sci. Eng., A360 (2003) 408
15 M. W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc., 79 (1996) 1953   DOI   ScienceOn
16 T. Chen, P. M. Green, J. L. Jordan, J. M. Hampikian, N. N. Thadhani, Metall. Mater. Trans., 33A (2002) 1737
17 S. B. Li, J. X. Xie, L. T. Zhang, L. F. Cheng, Mater. Lett., 57 (2003) 3048   DOI   ScienceOn