• Title/Summary/Keyword: Reaction Mechanism

Search Result 2,659, Processing Time 0.025 seconds

Ab Initio Study of Mechanism of Forming Germanic Bis-Heterocyclic Compound between Dimethyl-Germylene Carbene (Me2Ge=C:) and Acetone

  • Lu, Xiuhui;Che, Xin;Lian, Zhenxia;Li, Yongqing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dimethylgermylene carbene and acetone has been investigated with CCSD(T)//B3LYP/6-$31G^*$ method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel is that the two reactants firstly form a four-membered ring carbene (RC4) through the [2+2] cycloaddition reaction. Due to $sp^2$ hybridization of carbene C atom in RC4, RC4 further combines with acetone to form a reactant complexe (RC5). Due to the further $sp^3$ hybridization of carbene C atom in RC4, RC5 isomerizes to a germanic bisheterocyclic compound (P6) via the transition state (TS5).

A New Synthetic Approach to 3-Amino-2-phenylthietanes as Potential Monoamine Oxidase Inhibitors

  • Kang, Gun-Il;Frank S. Abbott
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1979
  • 3-Amino-2-phenylthietane derivatives were considered as a useful tool to elusidate the mechanism of inhibiton of MAO by tranylcypromine-type inhitors. The synthesis of 3-benzoylamino-2-phenylthieetane, 3-amino-2-phenylthietane, and 3-N, N-dimentylamino-2-p-nitrophenythietane was attempted using the reaction between 1, 3 dihalogeno alkanes with alkali sulfide. When 1-pheny1-1, 3-dihalo-2-benzolaminopropane was treated with sodium sulfide, 2-pheny 1-4 benzylidene-2-oxazoline was isolated, indicating the case of elimination reaction compared to ring formation. The reaction of 1-p-nitropheny1-1, 3-dichloro-2-N, N-dimethylaminopropane with sodium sulfide gave bis (1-p-nitropheny1-2-N, N-dimethylamino-3-chloropropane)sulfide. The mechanism of reaction was discussed.

  • PDF

Kinetics and Mechanism of $N_2H_4-KBrO_3$ Reaction in the Presence of Allyl Alcohol$^\dag$

  • Choi, Q.-Won;Chung, Keun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.462-465
    • /
    • 1986
  • Kinetics and Mechanism of $N_2H_4-KBrO_3$ reaction in the presence of allyl alcohol have been studied. The pseudo-first order rate constant for gas evolution was found to be $10^{-4}{\sim}10^{-2}\;sec^{-1}\;at\;25.0{\pm}0.1^{\circ}C$, increasing with concentration of hydrogen ion. When concentrations of sulfuric acid and allyl alcohol are both sufficiently high, the following overall reaction explains experimental results reasonably well: $N_2H_4\;+\;BrO_3^-\;+\;H^+\;{\to}\;N_2\;+\;HOBr\;+\;2H_2O,\;CH_2\;=\;CHCH_2OH\;+\;HOBr\;{\to}\;CH_2-OHCHBrCH_2OH$. More complicated reaction mechanisms at lower acidity conditions have been contemplated.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

Hydroiminoacylation of $\alpha,\omega$-diene with Aldimine by Rh(Ⅰ) and Isomerization of the Terminal Olefin to the Internal Olefin

  • Jun, Chul-Ho;Kang, Jung-Bu;Lim, Yeong-Gweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.287-291
    • /
    • 1993
  • Catalytic iminohydroacylation has been achieved by the reaction of aldimine 1 and 1,5-hexadiene (2a) with Wilkinson's complex as catalyst. Compounds 7a, 8a and 9a were obtained as final product after hydrolysis of the resulting iminohydroacylation products 4a, 5a and 6a. Depending on the reactant ratio (2/1), the ratio of products were changed dramatically : As the 2/1 ratio was increased, 7a is the major product after hydrolysis while 8a is the major with an 1/1 ratio of 2/1. The mechanism of the formation of 5a is determined by the reaction of 1 and 2b under the identical reaction conditions. Considering that 5a may not be formed from the hydroiminoacylation of 14a since 5b cannot be formed from that of conjugate diene 14b generated from isomerization of 2b, 5a must be formed from the reaction of 4a and 10 by addition-elimination mechanism.

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors ($YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도)

  • 윤존도;초우예
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Nitridation of Silicon Powder Compacts in Air (Air 분위기에서 규소성형체의 질화반응)

  • 최석홍;안영필
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.380-384
    • /
    • 1988
  • This investigation includes nitridation phenomena of silicon powder compacts in air. Nitridation reaction condition has been provided with using silicon nitride bed and active carbon additive. Reaction products are Oxynitride, $\alpha$-Si3N4, and $\beta$-Si3N4, Oxynitride(Si2N2O) phase in formed at outer surface layer ofsilicon powder compacts. $\alpha$-Si3N4, and $\beta$-Si3N4 are formed at inner region of powder compacts. Microstructural observation indicates that nitridation mechanism in this work is the same as conventional nitridation mechanism nitrogen gas.

  • PDF