Journal of the Korean Chemical Society 2003, Vol. 47, No. 4 Printed in the Republic of Korea

단 신

진쏜과 알코올의 광 유발반응에서 물과 산을 첨가시킬 때 나타나는 CIDEP의 EPR 연구

양 정 성

경남대학교 화학·공학부 (2003. 6. 13 집수)

EPR Investigation of the CIDEP observed in Photoinduced Reaction of Xanthone with Alcohol on Effect of Addition of Water and Acid

Jung Sung Yang

Division of Chemical Engineering, Kyungnam University, Masan 631-701 Korea (Received June 13, 2003)

주제어: TM, PRM, RTPM

Keywords: Triplet Mechanism, Radical Pair Mechanism, Radical Triplet Pair Mechanism

³Xn*(Xanthone)의 광 화학 반응에서 생성되는 자유 라디칼들은 CIDEP(Chemically Induced Dynamic Electron Polarization) 현상을 연구함으로서 알 수 있다. ^[4] TR-EPR (Time Resolved-Electron Paramagnetic Resonance) 스 펙트리는 전자 전이 반응에 의해 생성되는 음이온 라니 칼로 보고되고 있다.⁸ 예를 들면, 잔쏜이 알코올이나 페 놀과 반응하면 수소를 탈취하여 ketvl 라디칼이 생성되 고, sodiumborohydride와 반응하면 eyelohexadienyl 타 입의 라디칼이 생성되는데 이들 라디칼들은 모두 음이 온의 라디칼들이다. 이 같은 연구에서 얻어진 CIDEP 스펙트라의 대부분은 알짜 방출(net emissive) 혹은 E* ∧형 편극(낮은 자기장 쪽에서는 방출 그리고 높은 자기 장 쪽에서는 흡수. *기호는 net polarization의 초과를 나 타낸 것입)을 보인다. 또 자유라디칼의 편극의 형태는 두 가지 CIDEP 메카니즘을 이용해서 설명할 수 있다. 첫째, 삼중항 메카니즘(Triplet Mechanism : TM)은 방출 편극을 일으키는 'Xn*의 전자가 계간 전이(intersystem crossing: ise) 과정에 의한 부 준위에서 생기는 것이다. 둘째, ST⁶ 라디칼 쌍 메카니쥼(Radical Pair Mechanism: RPM)은 E/A(Emmision/Absorption) 편극에 대한 기여 때문에 나타나는 것이다. 이 같은 내용은 'Xu*에 대한 TR-EPR 스펙트럽의 방출 특성을 나타내는 관찰에서도 알 수 있다. 그리나 근래에 잔쏜의 광 화학반응에서 생 성되는 라디칼들이 알짜 흡수 편극의 특성을 나타내는 TR-EPR 스펙트라를 만드는 것으로 보고되고 있다.¹⁰⁴¹ 레이저 광 337 nm에서 조사된 잔쏜과 알코옴의 광

해어지 '영 5.57 mini에지 고자된 관련과 결고들의 영 환원반응은 잔쏜 케틸(XnH) 라디칼 과 E A* 편극을 갖 는 알코올(HP) 라디칼의 CIDEP 스펙트라블 보여준다. 이 반응에 브롬산을 첨가하면 이 라디칼의 스펙트라는 완전히 E* A편극으로 변한다. 이것은 잔쏜이 브롬산과 약한 착물을 형성함을 의미한다. 그리고 이 착물의 들 뜸이 라디칼을 흡수 편극을 갖는 EPR 스펙트라로 반 든 것이다. 그러나 브롭산의 첨가가 발광 편극의 패턴 에는 전혀 영향을 주지 않았다. 이것은 바닥상태에서 착물의 형성이 직접적인 분광학적 증기가 아님을 뜻한다.

푸리에 변환 EPR(Fourier Transform EPR: FT-EPR) 은 TR-EPR 기술보다 더 높은 감도와 더 좋은 스펙트 라의 분해능을 갖고 있다. 또 TR-EPR에 의한 시간 전 개(time evolution) 측정 실혂은 자기장에서의 방해를 받 지 않기 때문에 EPR 시그날의 생성과 소멸의 분석을 통하여 순간적으로 생성되었다가 소멸되는 화학 중들 의 근본적인 성질들을 더 명확하게 알 수 있다. 이런 이 유 때문에 본 실험에서는 FTEPR을 갖고 잔쫀과 알코 올의 광 화학반응의 초기 단계에서 스펀과 반응역학에 대한 새로운 정보들을 얻을 수 있었다.¹²

본 연구는 잔쏜과 2프로판올의 광화학반응에서 어떤 라디찿이 생성되는가를 규명하고, 그리고 잔쏜과 2-프 로판올에 20% HEO를 첨가시킨 혼합 용매와의 광 분해 반응과 또 이 반응에 보통산을 첨가시킬 때 스펀 편극 의 변화를 순간 FTEPR를 사용해서 조사해봅으로서 CIDEP 형태가 무엇인지를 알아보는데 연구의 목적이 있다.

실 험

FTEPR 측정은 X-band 스펙트로미터(JEOL FE-3X) 를 갖고 수행하였다. 광 여기는 XeCl excimer 레이저 (Lambdaphysik EMG 103 MSC, 308 nm, 12 Hz 반복 속도)를 갖고 실험하였다. 자유 유발붕괴(Free Induction Decay) 시그날은 CYCLOPS를 사용해서 얻었다.

FT-EPR의 파워 스펙트라는 Fid(Free induction decay) 의 Frourier 변환에서 얻었다. 그리고 EPR 시그날의 시 간 전개는 레이저 들뚞과 바이크로 파워 필스사이의 지 연 시간을 변화시킴으로서 측정하였다.

이 실험의 분리 시간은 -3×10⁻⁸ s이고 이 값은 마이 크로파와 레이저 필스의 폭과 필스 시간의 변화에서 주 로 결정하였다.

CIDEP.스펙트라는 boxear intergrator(PAR model 160) 를 사용하여 기록하였다.

잔쏜은 정제하지 않은 특급 시약을 그대로 사용하였 고. 2-프로판을은 G.R 급 시약(Aldrich)을 사용하였다.

FT-EPR 측정에서 샘플 용액내의 산소는 질소 가스를 EPR cavity내에 설치한 석영 첼을 통해 펌프로 주입시 킦으로서 제거 시켰다. 그리고 발광 스펙트라는 형광 스펙트로미터(Hitachi Model 850 또는 Shimadzu RF-500)을 갖고 측정하였다.

흡수와 방출 실험에서 2프로판을과 반응하는 잔쏜의 농도는 2.0×10⁻¹ M이었다. 그리고 첨가한 물의 양은 20% v/v 이었다. 그리고 보롭산의 농도는 1.1 M을 사 용하였다.

결과 및 고찰

흡수, 방출 그리고 순간 흡수의 측정

순수한 알코올 용매와 이 용매에 20% 물을 첨가시킨

Fig. 1. Effect of the addition of water on (a) absorption and (b) emission spectra of xanthone in 2-propanol. The concentration of xanthone was kept at $2.0 \cdot 10^{-4}$ M. The excitation wavelength used for recording the emission spectra was 308 nm.

조건에서 얻은 Xn의 흡수 스펙트라를 *Fig.* 1(a)에 나타 냈다. 이 그림은 20% (V V) H2O를 첨가해도 피이크의 변화가 거의없는 것을 보여주고 있다. 즉 2-프로판올에 물을 첨가시킬 때에는 흡수 스펙트라에서 아무런 변화 도 일어나지 않았다. 이것으로부터 잔쫀의 바닥상태는 약간의 물을 첨가해도 영향을 받지 않는다는 것을 알 수 있었다.

Fig. 1(b)는 반응 조건을 달리한 Xn과 2-프로판올과 의 반응에서 얻은 발광 스펙트라이다.

여기서 보면 피이크의 강도가 20%의 불의 첨가로 인 하여 흡수 스펙트럽과는 대조적으로 발광 스펙트럽에 서는 상당히 커진 것을 볼 수 있다. 또 450 nm근처에 서 두 피이크가 약해지면서 거의 접근하는 것을 볼 수 있다. 따라서 잔쏜의 바닥 상태는 물의 첨가 때문에 생 기는 Xn의 용매화의 영향을 크게 받는 것을 알 수 있다.

다음은 'Xn*의 특성을 알아보기 위하여 순간 흡수 실 험을 수행하였다. 'Xn*의 흡수 스펙트럼은 615 nm근 처에서 최대 값을 갖는 것으로 알려져 있다. Fig. 2(a) 는 615 nm에서 순수한 2-프로관음과 10⁻² M과 10⁻³ M

Fig. 2. Decay of the transient absorption at 615 nm observed upon photoexcitation of xanthone in 2-propanol. (a) Xanthone concentration dependence of the decay. (b) Effect of addition of 20 water.

의 농도를 갖는 잔쏜과의 광 분해반응에 따른 순간 휴 수의 붕괴 곡선을 보여준 것이다. 이 곡선을 보면 처음 에 빠른 붕괴가 일어나는 것을 알수 있다. 이것은 ³Xn* 이 용매 분자로부터 H를 탈취함으로써 생성된 XuH라 디칼에 의한 및의 휴수 때문으로 볼 수 있다. 순수한 2.프로판을과 10⁻⁸ M의 잔쏜과의 반응에서는 3.2×10⁶ s⁻¹ 의 속도 상수를 갖는다. 그러나 20%의 물을 포함한 2-프로판을과 10⁻⁸ M의 잔쏜과의 반응에서는 *Fig.* 2(b)에 서 보는바와 같이 삼중항 붕괴 속도가 1.2×10⁶ s⁻¹로 확인되었다. 그러므로 순간 흡수는 불을 첨가할 때가 첨가하지 않을 때보다 붕괴 속도가 느린 것을 알 수 있 었다. 식 (1)은 잔쏜과 알코올의 라디칼 반응을 나타낸 것이다.

$$^{3}X^{*} + PrOH \xrightarrow{\text{RLV}} + XnH + + PrOH$$
 (1)

³Xn*의 붕괴속도상수, kHA는 ³Xn* 주위에 용매화에 의존함을 알 수 있다.

특히 물에 의한 용매화는 3(nπ*)보다 3 (ππ*)의 에너 지가 더 낮기 때문에 수소 탈취 속도가 느려진다고 볼 수 있다.¹⁴¹⁵

FT-EPR 측정

308 nm의 레이저 들뜸에 의해 잔쏜과 2-프로판을과 의 반응에서 생성된 라니칼의 FT-EPR스펙트럼을 *Fig.*

(b) 2-propanol withH2O 20% (v/v)

Fig. 3. FT-EPR spectra of free radicals formed by photolysis of xanthone (1.0 10^{-2} M) observed for a delay time of 60 ns after the laser pulse. (a) in neat 2-propanol. (b) in a 2-propanol with 20 water.(c) in 2-propanol with 20% water and 1.1 M HBr. The arrows mark the resonance peaks due to 2 HP.

3(a)에 나타냈다. 스펙트럼의 낮고 높은 양 자기장에서 의 예리한 강한 선들은 2 HP 라디칼에 의해 나타난 것 이고 스펙트럼의 중앙에 다중선의 시그날은 반응식 (1) 과 일치하는 Xanthone Ketyl(XnH) 라디칼에 의해 나타 난 것이다. 이 스펙트럼은 STo RPM에 의해 생성된 E A의 지배적인 기여로 인하여 E A* 편극을 보여준 것이 다. 그리고 알짜 E성분은 TM CIDEP에 언유된 것이다.

방출 시그날을 일으킬 수 있는 삼중항 메카니줌 TM 은 온도가 낮은 용액에서 잔쏜 삼중항의 TR-EPR 측정 으로부터 얻었다.

lig. 3(a)에서 얻은 편극의 형태는 들뜸 파장에 따라

다르다. 이 같은 사실은 337 nm 레이저 돌뜸을 이용한 잔쏜의 다른 광분해 반응에서 형성되는 자유 라디칼의 TR-EPR의 연구논문과 비교하여 알 수 있었다.¹⁷ 본 실 험에서 들뜸원으로 XeCl excimer 레이저 308 nm를 사 용해서 얻은 TR-EPR 스페트라는 FT-EPR 실험치와 일 치하였고 E*A 특성을 보였다. 그러나 355 nm의 돌뜸 원에서 안은 타 실험에서는 E A* 타입의 특성을 보였 다. 이것으로부터 Xn과 2-프로판올의 광 분해반응에서 생성된 자유 라디칼의 스페트라의 CIDEP 형태는 들뜸 파장에 의존한다는 사실을 알 수 있었다.

Fig. 3(b)에서 보는 바와 같이 잔쏜과 2-프로판을과의 반응에 물을 첨가하면 시그날의 강도가 감소하고 CIDEP 의 형태도 약간 변하는 것을 알 수 있다. 또 이 스펙트 라는 물이 없는 Fig. 3(a)와 비교하면 물이 있을 때 더 명확한 E* A특성을 보여 주는 것을 알 수 있다.

20%의 불을 포함한 잔쏜과 알코올의 반응에 브롬산 을 첨가시키면 Fig. 3(c)에서 보는 바와 같이 CIDEP 패 턴이 현저하게 변한다. 즉 이 반응에서 FT-EPR스펙트 라는 결국 10%/A에서 1%/A*로 바뀌는 특성을 보여주고 있다. 이 계에서 외견상으로 큰 시그날의 알짜 흡수 시 그날을 만드는 메카니즘이 있고 또 작은 시그날 성분은 RPM으로부터 유래된 메카니즘이 존재한다고 볼 수 있다.

결 론

잔쏜과 2-프로판올과의 광 화학반응에서 생성되는 라 디칼은 Xanthone ketyl(XnH) 라디칼과 2-hydroxypropan-2-yl(2 HP) 라디칼인 것을 알 수 있었다.

잔쓴과 2.프로관음의 용액반응에서 물을 첨가시킬 때 시그날의 강도가 감소하며, CIDEP 패턴의 변화의 원인 이 되었다. 이 스펙트럼은 물이 없을 때와 비교하면 물 이 있을 때 더 뚜렀한 E*A의 강한 패턴을 보여주었다. 즉,불의 첨가로 인한용매화효과 대분인 것을 알 수 있었다.

20%의 H₂O를 갖는 알코올과 잔쏜 용액반응에 보름 산을 첨가하면 CIDEP 패턴의 강한 변화의 원인이 된 다. 그리고 이 스펙트라는 보다 약한 E A특성을 전체 적으로 보여주고 있지만, 외결상으로, 순 흡수 시그날 의 기여를 지배하는 CIDEP 메카니즘이 이 계에 있다 는 것이다. 그리고 작은 시그날의 성분은 RPM으로부 터 유래한 것으로 볼 수 있다.

순수한 2-propanol과 10²M과 10³M의 잔쏜의 광 분

해반응에 따른 순간 흡수의 붕괴 곡선은 처음에는 빠른 붕괴가 일어난다. 이것은 용매 분자로부터 H의 탈취로 생성된 XnH라디칼에의한빛의 흡수때문으로 볼 수 있다.

상중항 붕괴 속도는 1.2×10⁶ s¹로 확인되었으며 순 간 흡수는 물을 첨가할 때가 첨가하지 않을 때보다 붕 피 속도가 느린 것을 알 수 있다.

물을 포함한 잔쏜과 2-프로판올과의 반응에 보통산을 첨가시키면 발광이 순 흡수 편극으로 바뀐 것을 알 수 있었다.

CIDEP 형태는 실험을 통해 삼중항 메카니즘(TM)과 라디칼 삼중항 페어 메카니즘(RTPM)으로부터 약간 기 이된 주로 S-To 라디칼 페어 메카니즘(RPM)에 의한 것 을 알 수 있었다.

본 연구는 2002년도 경남대학교 학술 연구 조성비에 의해 수행되었으며 이에 감사를 드립니다.

인 묨 문 헌

- J. S. Yang, N. Hirota, Y. Kitahama, J. Phys. Chem. A, 2000, 104, 5928.
- 2. J. S. Yang, J. Basic Science, 2001, 15, 41.
- K. Tominaga, S. Yamauchi, N. Hirota, J. Chem. Phys. 1990, 92, 5175.
- N. Ishiwata, H. Murai, K. Kuwata, R es. Chem. Intermed. 1993, 19, 59.
- K. Ohara, N. Hirota. Bull. Chem. Soc. Jpn., 1996, 69, 1517.
- H. van Willigen, H. P. Levstein, R. M. Ebersile, *Chem. Rev.* **1993**, *93*, 173.
- A. Kawai, T. Okutsu, K. Obi, J. Phys. Chem. 1991, 95, 9130.
- P. R. Levstein, H. van Willigen, J. Chem. Phys. 1991, 95, 900.
- K. Ohara, N. Hirota, C. A. Steren, H. van Willigen, Chem. Phys. Lett. 1995, 232, 169.
- 10. J. S. Yang, Environmental Research 2000, 23, 115.
- 11. A. Kawao, K. Obi, J. Phys. Chem. 1992, 96, 5701.
- S. Michaeli, V. Meiklyar, M. Schulz, K. Möbius, H. Levanon. J phys. Chem. 1994, 96, 7444.
- 13. J. S. Yang, Theses Collection, 2001, 19, 93.
- 14. K. Katsuki, K. Akiyama, S. Tero- Kubota, Bull. Chem. Soc. Jpn. 1995, 68, 3383.
- H. Murai, M. Minami, Y.J. Ihaya, J. Chem Phys. 1994, 101, 4514.
- A. Kawai, T. Okutsu, K. Obi, Chem. Phys. Lett. 1990, 174, 213.

- 17. M. Baba, T. Kamei, M. Kiritani, S. Yamauchi, N. Hirota, Chem. Phys. Lett. 1991, 185, 354.
- 18. H. Murai, K. Kuwata, J. Phys. Chem. 1991, 95, 9247.
- J. J. Cavaleri, K. Prater, R. M. Bo wman, *Chem. Phys. Lett.* **1996**, 259, 495.
- 20, J. S. Yang, Environmental Research 2000, 23, 115.
- 21. C. Blättler, F. Jont, H. Paul, Res. Chem. intermed. 1991, 16, 201.
- 22. K. Katsuki, K. Akiyama, Y. Ikegami, S. T. Kubota, J. Am. Chem. soc. 1994, 116, 12065.
- 23. H. Murai, M., Minami, Y. J. IHaya, J. Phys. Chem. 1988, 92, 2120.
- 24. K. Ohara, H. Murai, Bull. Chem. Soc. Jpn. 1989, 62, 2435.
- 25, J. S. Yang, J. Theses Collection, 2002, 20, 161.