• 제목/요약/키워드: Reaching kinematics

검색결과 11건 처리시간 0.027초

양손으로 물체 옮기기 과제 수행 시 우세손이 옮기는 물체의 종류와 목표점의 위치 변화가 비우세손의 팔뻗기 동작에 미치는 영향 (The Influence of Different Objects and Target Locations of Dominant Hand on the Non-Dominant Hand Movement Kinematics in Bimanual Reaching)

  • 김민희;전혜선
    • 한국전문물리치료학회지
    • /
    • 제15권3호
    • /
    • pp.44-52
    • /
    • 2008
  • The purpose of this study was to investigate the effects of different objects and target location of dominant hand on the non-dominant hand movement kinematics in a bimanual reaching task. Fifteen right-handed volunteers were asked to reach from same starting point to the different target point of right and left hand with grasping the objects of different size. Independent variables were 1) three different object types (small mug cup, name pen, and PET bottle), and 2) three different target locations (shorter distance, same distance, and longer distance than the non-dominant hand) of the dominant hand. Dependent variables were movement time (MT), movement distance (MD), movement mean velocity ($MV_{mean}$), and movement peak velocity ($MV_{peak}$) of the non-dominant hand. Repeated measures two-way analysis of variance (ANOVA) was used to test for differences in the non-dominant hand movement kinematics during bimanual reaching. The results of this study were as follows: 1) MT of the non-dominant hand was increased significantly when traveling with grasping the mug cup and reaching the far target location, and was decreased significantly when traveling with grasping the PET bottle and reaching the near target location of the dominant hand. 2) MD of the non-dominant hand was significantly increased during reaching the far target location, and significantly decreased during reaching the near target location with dominant hand. 3) $MV_{mean}$ of the non-dominant hand was increased significantly when traveling with grasping the PET bottle, and was decreased significantly when traveling with grasping the mug cup of the dominant hand. Therefore, it can be concluded that the changes of the ipsilateral hand movement have influence on coupling of the contralateral hand movement in bimanual reaching.

  • PDF

The Effects of Head Position in Different Sitting Postures on Muscle Activity with/without Forward Head and Rounded Shoulder

  • Nam, Ki-Seok;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • 제26권3호
    • /
    • pp.140-146
    • /
    • 2014
  • Purpose: Differences in scapular kinematics and muscle activity appear in the forward head and rounded shoulder posture (FHRSP). Thus, the aim of this study was to investigate the following effects according to different postures on scapular kinematics and muscle activity around scapular region in individuals with and without FHRSP during overhead reaching task. Methods: Thirty pain-free subjects with/without FHRSP participated in this study. All subjects were positioned into three positions: habitual head posture (HHP), self-perceived ideal head posture (SIHP) and therapist-perceived neutral head posture (TNHP). Muscle activities of upper trapezius (UT), lower trapezius (LT) and serratus anterior (SA) were measured during overhead reaching task. Results: Muscle activity of trapezius muscle (UT and LT) during HHP was significantly higher than SIHP and TNHP in FHRSP group (p<0.05), but there was no difference between SIHP and TNHP. SA also significantly increased muscle activity in HHP more than SIHP and TNHP in FHRSP group (p<0.05), but there was no significant difference between SIHP and TNHP. In Non-FHRSP group, although there was a tendency of different muscle activities among three postures, it was not statistically significant. Conclusion: This result demonstrates that muscle activity associated with overhead reaching task is increased in HHP which affects the scapular kinematics and SIHP contributes changed scapular kinematics and proper recruitment of muscle activity in FHRSP similarly to TNHP.

편마비 환자의 팔 뻗기 과제 수행 시 목표거리와 건·환측 사용에 따른 운동시간과 체간의 움직임 분석 (Analysis of Movement Time and Trunk Motions According to Target Distances and Use of Sound and Affected Side During Upper Limb Reaching Task in Patients With Hemiplegia)

  • 김기송;유환석;정도헌;전혜선
    • 한국전문물리치료학회지
    • /
    • 제17권1호
    • /
    • pp.36-42
    • /
    • 2010
  • The aim of this study was to investigate effects of reaching distance on movement time and trunk kinematics in hemiplegic patients. Eight hemiplegic patients participated in this study. The independent variables were side (sound side vs. affected side) and target distance (70%, 90%, 110%, and 130% of upper limb). The dependent variables were movement time measured by pressure switch and trunk kinematics measured by motion analysis device. Two-way analysis of variance with repeated measures was used with Bonferroni post-hoc test. (1) There were significant main effects in side and reaching distance for movement time (p=.01, p=.02). Post-hoc test revealed that there was a significant difference between 110% and 130% of reaching distance (p=.01). (2) There was a significant main effect in side and reaching distance for trunk flexion (p=.01, p=.00). Post-hoc test revealed that there were significant differences in all pair-wise reaching distance comparison. (3) There was a significant side by target distance interaction for trunk rotation (p=.04). There was a significant main effect in target distance (p=.00). Post-hoc test revealed that there were significant differences between 70% and 110%, 70% and 130%, 90% and 110%, 90% and 130% of target distance. It was known that trunk flexion is used more than trunk rotation during reaching task in hemiplegic patients from the findings of this study. It is also recommended that reaching training is performed with limiting trunk movement within 90% of target distance whereas reaching training is performed incorporating with trunk movement beyond 90% of target distance in patients with hemiplegia.

VCM을 이용한 리소그래피용 레티클 스테이지의 설계 및 기구학적 해석 (Design and Kinematic Analysis of the Reticle Stage for Lithography Using VCM)

  • 오민택;김문수;김정한
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.86-93
    • /
    • 2008
  • This paper presents a design of the reticle stage for lithography using VCM(Voice Coil Motor) and kinematic analysis. The stage has three axes for X,Y,${\theta}_z$, those actuated by three VCM's individually. The reticle stage has cross coupled relations between X,Y,${\theta}_z$ axes, and the closed solution of the forward/inverse kinematics were solved to get an accurate reference position. The reticle stage for lithography was designed for reaching both high accuracy and long stroke, which was $0.1{\mu}m$ (X,Y)/ $1{\mu}rad({\theta}_z)$ accuracies and relatively long strokes about 2mm (X,Y) and 2 degrees(${\theta}_z$). Also this research presents a rotational compensation algorithm for the precision gap sensor for the stage. Simulation results show the overall performance of the whole algorithm and the improvement quantity of the rotational compensation algorithm.

물체 크기와 뻗기 거리가 상지 움직임에 미치는 영향 (The Effects of Object Size and Reaching Distance on Upper Extremity Movement)

  • 배수영;김태훈
    • 대한지역사회작업치료학회지
    • /
    • 제10권1호
    • /
    • pp.51-61
    • /
    • 2020
  • 목적 : 정상인을 대상으로 팔뻗기 수행 시 물체 크기와 뻗기 거리가 상지의 운동형상학적 요소에 미치는 영향을 알아보고자 하였다. 연구 방법 : 대상자는 부산시 D대학교에 재학 중인 대학생 30명이며 측정 도구는 삼차원 동작 분석기인 CMS-70P(Zebris Medizintechnik Gmbh, Germany)를 사용하였다. 과제는 6가지 조건이다. 팔뻗기 수행시 물체 크기(2cm, 10cm)와 뻗기 거리(15%, 37.5%, 60%)의 변화에 따른 움직임의 평균 속도, 평균 가속도, 최대 속도, 속도의 정점수를 측정하였다. 대상자의 일반적 특성은 기술통계를 사용하였다. 두 가지 물체 크기에서 세 가지 뻗기 거리로 팔뻗기 과제를 수행했을 때 변수를 비교하기 위해 일원분산분석(One-way ANOVA measure)으로 분석하였고, 사후검정은 Tukey 검정을 실시하였다. 또한 세 가지 뻗기 거리에서 두 가지 물체 크기에 따른 운동형상학적 차이를 분석하기 위해서 독립 t검정(Independent t-test)을 사용하였다. 팔뻗기 거리(15%, 37.5%, 60%)와 물체 크기(2cm, 10cm)에 따른 상호작용효과를 확인하기 위해 이원분산분석(3×2 Two-way ANOVA measure)을 실시하였다. 통계적 유의수준 α는 .05로 설정하였다. 결과 : 정상인은 물체 크기와 뻗기 거리의 변화에 따라 상지 움직임에 유의한 차이가 있었다. 물체 크기가 동일한 경우 뻗기 거리가 길어질수록 평균 속도, 최대속도가 증가하였고, 속도의 정점 수는 감소하였다. 뻗기 거리가 동일한 경우 물체 크기가 커질수록 평균 속도, 최대 속도가 증가하였고 속도의 정점 수는 감소하였다. 물체 크기와 뻗기 거리의 변화는 평균 가속도에 영향을 미치지 않았으며 유의한 차이가 없었다. 결론 : 과제를 시간적, 공간적 특성으로 제한하는 것은 대상자의 상지 움직임에도 영향을 미치게 된다. 따라서 본 연구의 결과를 토대로 신경학적 기능수준에 따라 세밀하게 등급화된 과제제공에 도움이 될 것으로 사료된다.

Optical Long-slit Spectroscopy of Parsec-scale Jets

  • 오희영;표태수;육인수;김강민;이성호;박병곤
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.55.2-55.2
    • /
    • 2013
  • We present the observational study of parsec-scale jets from YSOs reaching lengths of several arc-minutes. The medium-resolution spectroscopic data were obtained between 6000 - $7000{\AA}$ with BOAO long-slit spectrograph. By performing multi-position observation, we investigated the physical variation of the jets and the ambient gas along the whole path of the jets. The flux, electron density, ionization fraction, and electron temperature are discussed with the estimated line ratios between from [OI], [NII], $H{\alpha}$ and [SII] emission lines. This study carried out with more than 8 jets of YSOs including low- to intermediate-mass stars. We also briefly discuss the kinematics of the outflows using spatial and spectroscopic data.

  • PDF

저가 Redundant Manipulator의 최적 경로 생성을 위한 Deep Deterministic Policy Gradient(DDPG) 학습 (Learning Optimal Trajectory Generation for Low-Cost Redundant Manipulator using Deep Deterministic Policy Gradient(DDPG))

  • 이승현;진성호;황성현;이인호
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.58-67
    • /
    • 2022
  • In this paper, we propose an approach resolving inaccuracy of the low-cost redundant manipulator workspace with low encoder and low stiffness. When the manipulators are manufactured with low-cost encoders and low-cost links, the robots can run into workspace inaccuracy issues. Furthermore, trajectory generation based on conventional forward/inverse kinematics without taking into account inaccuracy issues will introduce the risk of end-effector fluctuations. Hence, we propose an optimization for the trajectory generation method based on the DDPG (Deep Deterministic Policy Gradient) algorithm for the low-cost redundant manipulators reaching the target position in Euclidean space. We designed the DDPG algorithm minimizing the distance along with the jacobian condition number. The training environment is selected with an error rate of randomly generated joint spaces in a simulator that implemented real-world physics, the test environment is a real robotic experiment and demonstrated our approach.

고령운전자 시트 벨트 뻗침 거동 특성 분석 (Characteristics of Elderly Drivers' Reach Motion to Seat Belt)

  • 최우진;곽승호;최형연
    • 대한인간공학회지
    • /
    • 제29권1호
    • /
    • pp.73-82
    • /
    • 2010
  • The purpose of this study is to understand motion characteristics of older drivers during reaching seat belt compared to young drivers and to provide design guidelines in order to reduce discomfort for the elderly. The whole body kinematics of each subject was captured using 12-camera motion analysis system. Subjective ratings on discomfort levels were obtained simultaneously using a questionnaire. This paper first presents the result of motion characteristics of elderly drivers' reach motion to seat belt. Compared to young drivers, older drivers performed seat belt reach motions less efficiently and moved slower due to mostly the movement error. Older drivers also made use of reduced joint range of motion in cervical left rotation, lumbar left rotation and right shoulder adduction, which can be explained by their reduced active range of motions (AROMs). To compensate for their reduced joint range of motion, older drivers rotated pelvis more.

발성이 작업수행 중 상지 움직임에 미치는 영향 (Effects of Vocalization on Upper Extremity Motion During Occupational Performance)

  • 박지혁;유은영;신수정;신혜경;김진경
    • 한국전문물리치료학회지
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of this study was to research the effects of vocalization on upper extremity motion during occupational performance and to compare non-meaning and meaning vocalization. Experiments were performed on 30 subjects. They had no medical history of neurological problems with their upper extremities. Using a tea cup, a tea tray, and a tea spoon, they set a table during vocalization. We used meaning and non-meaning vocalization with the subjects. An example of meaning vocalization would be naming something, and an example of non-vocalization would be saying, "Ah." We used a 3-D analysis system called CMS-HS. We analyzed the motion in the angular velocity and acceleration of the elbow while recording performance time. The results of this study showed that vocalization enhanced the angular velocity and acceleration of the elbow, and also enhanced performance time. In short, vocalization improved upper extremity motion by making it faster and smoother. There were no significant differences between meaning and non-meaning vocalization.

  • PDF