• Title/Summary/Keyword: Re-pull-out test

Search Result 10, Processing Time 0.026 seconds

Experimental Study on Pull-out Strength of Glued-in Rods Connection according to Adhesive (접착제에 따른 Glued-in Rod 접합부 인발성능에 관한 실험 연구)

  • Park, Keum-Sung;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2022
  • In this study, a pull-out test considering the adhesive type, embedded length, and direction of re-bar was conducted to evaluate the pull-out performance of glued-in rod joints using timber and adhesive produced in Korea. In the test, the specimens using liquid adhesive showed better pull-out performance, and the longer the embedded length of the re-bar, the higher the maximum tensile load by inducing the yield of the re-bar first. Through the test results, a glued-in rod joints design, which is advantageous to design the adhesive strength stronger than the yield strength of re-bar, was proposed, and a correction factor of 0.75 for the adhesive strength considering construction error was also suggested.

Supporting Characteristics of a Spiral Bolt through Pull-out Test (인발시험을 통한 스파이럴 볼트의 지보특성)

  • Kim, Jang-Won;Kang, Choo-Won;Song, Ha-Lim
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • To make large slopes or rock structures stable, supporting systems, such as anchor bolt, rock bolt and spiral bolt which are developed recently, are commonly used. In this study, in-situ pull-out tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of spiral bolt that is newly developed. Re-pull-out test for the spiral bolt in which loading and unloading cycles are repeated three times showed that the maximum pull-out load is almost constant irrespective of the number of loading cycles, which may be due to no failure between spiral bolt and filler. On the other hand, the maximum pull-out load for the conventional rock bolt decreases with the number of loading cycles due to the partial failure between rock bolt and filler.

Pull-Out Bond Properties of Polymer Cement Coated Rebars in HSC (고강도콘크리트에서 폴리머 시멘트 슬러리 도장철근의 인발부착특성)

  • 김민호;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.215-220
    • /
    • 2002
  • Epoxy-coated re-bar was partly used to the structures and put to practical use, but were not economical and appeared to have defects such as the diminishing of long term bond strength between concrete. The study of polymer cement slurry coated re-bar was started in order to complement the defect of epoxy coated re-bar, and ever since the basic properties appeared to be excellent. But, study of bond properties embedded in concrete specimens was insufficient until now. This study attempts to examine the possibility of improving the bond strength of polymer cement slurry coated re-bar between concrete specimens in accordance with ACI Code and KS Code through pull-out test of 150mm$\times$150mm$\times$150mm substrates with polymer cement slurry coated re-bar having polymer cement ratios of 50%, 75% and 100%, coating thickness 250${\mu}{\textrm}{m}$, 450 ${\mu}{\textrm}{m}$ and with curing ages of 3, 7 and 28 days. High strength concrete was designed having a compressive strength of 500kgf/cm2 as specified. Practical bond length ranges of 55 and 85mm were applied to each of specimen. The bond strength of polymer cement slurry coated re-bar using St/BA-1 and St/BA-2 was compared to that of plain re-bar. The results of this study showed that the bond strength of 55mm bond length was much higher than that of 85mm bond length.

  • PDF

Deformation Characteristics of the Pressurized Grouting Soil Nailing Systems from the Field Pull-out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 변형특성)

  • Chun, Byungsik;Park, Joosuck;Park, Sisam;Jung, Jongju;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2008
  • In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is proposed. Effects of various factors related to the design of the pressurized grouting soil nailing system, such as the length of re-bars and type of reinforcement materials, were examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests were performed and the ratio of injected grout volume to grout hole volume were also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed PGSN system were analyzed and compared with those of the ordinary soil nailing system by carrying out field pull-out tests. The test results were shown that the displacements of pressurized grouting soil nailing system were decreased 30~36% in comparison with using gravity grouting soil nailing system by the pressurized effect. The displacements of steel tube were diminished 31~32% comparison with using deformed bar by the reinforcement type change from the field pull-out tests.

  • PDF

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars (폴리머 시멘트 슬러리 도장철근의 인발부착 특성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

Bond Properties of Polymer Cement Mortar to Reinforced Steel Bar (폴리머 시멘트 몰탈의 철근 부착특성 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.106-107
    • /
    • 2013
  • The purpose of this study is to characterize the bonding properties between reinforced bar and re-emulsion polymer cement mortar through the pull off test. The properties of polymer cement mortar before and after hardening were measured. Spiral reinforced steel bar was used to control the brittleness fracture of test specimens. In addition polymer content as experimental factors, the types of reinforced bar and corrosion were considered as well. Non linear FEM analysis was carried out to expect the behavior of bonding interface under the certain load.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Loop Suture Technique for Flexor Digitorum Profundus Tendon Repair in the Insertion Site (고리 봉합법을 이용한 심부 수지 굴건 종지부에서의 건봉합)

  • Lee, Kyu-Cheol;Lee, Dong-Chul;Kim, Jin-Soo;Ki, Sae-Hwi;Roh, Si-Young;Yang, Jae-Won
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • Purpose: In the case of repair for far distal parts of FDP (Flexor digitorum profundus) division, the method of either pull-out suture or fixation of tendon to the distal phalanx is preferred. In this paper, the results of a modified loop suture technique used for the complete division of FDP from both zone 1a and distal parts of zone 1b in Moiemen classification are presented. Methods: From July 2006 to July 2009, the modified loop suture technique was used for the 10 cases of FDP in complete division from zone 1a and distal parts of zone 1b, especially where insertion sites were less than 1 cm apart from a tendon of a stump. In a suture technique, a loop is applied to each distal and proximal parts of tendon respectively. Core suture of 2-strand and epitendinous suture are done with PDS 4-0. Out of 10 patients, the study was done on 6 patients who were available for the followup. The average age of the patients was 49.1 years (in the range from 26 to 67). 5 males and 1 female patients were involved in this study. There were 3 cases with zone 1a and distal parts of zone 1b. The average distance to the distal tendon end was 0.6 cm. There were 5 cases underwent microsurgical repair where both artery and nerve divided. One case of only tendon displacement was presented. The dorsal protective splint was kept for 5 weeks on average. The results of the following tests were measured: active & passive range of motion, grip strength test, key pinch and pulp pinch test. Results: The follow-up period on average was 11 months, in the range from 2 to 20 months. There was no case of re-rupture, but tenolysis was performed in 1 cases. In all 6 cases, the average active range of motion of distal interphalangeal joint was 50.8 degree. The grip strength (ipsilateral/contralateral) was measured as 88.7% and the pulp pinch test was 79.2% as those of contralateral side. Flexion contracture was presented in 2 cases (15 degree on average) and there was no quadrigia effect found. Conclusion: Despite short length of tendon from the insertion site in FDS rupture in zone 1a and distal parts of zone 1b, sufficient functional recovery could be expected with the tendon to tendon repair using the modified loop suture technique.