• Title/Summary/Keyword: Re-melting

Search Result 73, Processing Time 0.026 seconds

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

Study on Characteristics of Sn-0.7wt%Cu-Xwt%Re Solder (Sn-0.7wt%Cu-Xwt%Re 솔더의 특성에 관한 연구)

  • Noh, Bo-In;Won, Sung-Ho;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.21-25
    • /
    • 2007
  • In this study, the properties of Sn-0.7wt%Cu-Xwt%Re(X=$0.01{\sim}1.0$) older were investigated by using DSC(differential scanning calorimetry), wetting balance, victors hardness and tensile testers. The melting temperature of solder was increased with increasing the contents of rare earth element, and the melting temperature range of Sn-0.7Cu-($0.01{\sim}1.0$)Re solder was $233.9{\sim}234.7^{\circ}C$. The wettability with Sn-0.7Cu-0.1Re solder was higher than that of Sn-0.7Cu-0.01Re and Sn-0.7Cu-1.0Re solders, and the wettability of Sn-0.7Cu-0.1Re solder was higher than that of Sn-0.7wt%Cu-0.01w%P solder. Also, the hardness and tensile strength of solder were increased with increasing the contents of rare earth element.

  • PDF

Seed melting during seeded-melt growth process of YBCO superconductors

  • Kim, Chan-Joong;Hong, Gye-Won;Kim, Ho-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.14-16
    • /
    • 2002
  • Melting and re-solidification nature of $SmBa_2Cu_3O_{7-y}$ (Sm123) grains in Ba-Cu-O (Ba:Cu=3:5) liquid containing 0.7 at.% yttrium were investigated at the temperature lower than its melt point. When Sm123 grains/liquid powder compacts were heated to a temperature between two melting points of Ba-Cu-O liquid ($1000^{\circ}C$) and a Sm123 phase ($1060^{\circ}C$) and held at this temperature for appropriate time, Sm123 grains melted partly in the liquid that was formed by melting of the liquid-forming powder. During subsequent slow cooling, (Sm,Y)$Ba_2Cu_3O_{7-y}$ solidified at the outer parts of the unmelted Sm12 grains, which is distinguished from the core regions by lower $Sm_2BaCuO_5$ (211) density.

  • PDF

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Thermoelectric Properties of $Sn_zCo_3FeSb_{12}$ ($Sn_zCo_3FeSb_{12}$의 열전특성)

  • Lee, Jae-Ki;Yoon, Seok-Yeon;Jung, Jae-Yong;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.126-127
    • /
    • 2007
  • Sn-filled and Fe-doped $CoSb_3$ skutterudites were synthesized by encapsulated induction melting. Single ${\delta}$-phase was successfully obtained by subsequent annealing and confirmed by X-ray diffraction analysis. Temperature dependences of Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed the p-type conduction. Electrical resistivity increased with increasing temperature, which shows that the $Sn_zCo_3FeSb_{12}$ skutterudite is highly degenerate. Thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. Thermoelectric figure of merit was enhanced by Sn filling and its optimum filling content was considered to be z=0.3 in the $Sn_zCo_3FeSb_{12}$ system.

  • PDF

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Phase transformation of $REBa_2Cu_3O_{7-x}$ (RE=Nd, Gd, Dy) Superconductor during Continuous Cooling and Isothermal Heat Treatment (등온열처리와 냉각에 따른 $REBa_2Cu_3O_{7-x}$ (RE=Nd, Gd, Dy) 초전도체의 상변화)

  • O, Yong-Taek;Shin, Dong-Chan;Han, Young-Hee;Sung, Tae-Hyun;Jeong, Nyeon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.42-45
    • /
    • 2003
  • The phase transformation of $REBa_2Cu_3O_{7-x}$ (RE=Nd, Gd, Dy) was investigated using isothermal heat-treatment and continuous cooling in air. During continuous cooling, the $REBa_2Cu_3O_{7-x}$ (RE=123) superconducting phase with well-distributed $REBa_2Cu_3O_{7-x}$ (RE-211) was obtainde at a cooling rate of $0.001^{\circ}C$/s. Single phase RE-123 (Nd, Gd, Dy) was stable at $1050^{\circ}C$, $1050^{\circ}C$, and $950^{\circ}C$ during isothermal heat-treatment, respectively. Above these temperatures the RE-211 phase existed within the RE-123 grains. The RE-123, RE-211, $BaCu_2Od_2$, and CuO phases coexisted at $50^{\circ}C$ below the partial melting temperature for each respective rare-earth RE-123.

  • PDF

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Preliminary Study on Improvement of Surface Characteristics of Stellite21 Deposited Layer by Powder Feeding Type of Direct Energy Deposition Process Using Plasma Electron Beam (플라즈마 전자빔을 이용한 분말공급형 직접식 에너지 적층 공정으로 제작된 Stellite21 적층층의 표면 특성 개선에 관한 기초 연구)

  • Kim, Dong-In;Lee, Ho-Jin;Ahn, Dong-Gyu;Kim, Jin-Seok;Kang, Eun Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.951-959
    • /
    • 2016
  • The aim of this paper is to investigate the improvement of surface characteristics of Stellite21 deposited layer by powder feeding type of direct energy deposition (DED) process using a plasma electron beam. Re-melting experiments of the deposited specimen is performed using a three-dimensional finishing system with a plasma electron beam. The acceleration voltage and the travel speed of the electron beam are chosen as process parameters. The effects of the process parameters on the surface roughness and the hardness of the re-melted region are examined. The formation of the re-melted region is observed using an optical microscope. Results of these experiments revealed that the re-melting process using a plasma electron beam can greatly improve the surface qualities of the Stellite21 deposited layer by the DED process.