Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.3.132

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing  

Rahman, Md. Mahmudur (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
Kim, Il-Ho (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
Ur, Soon-Chul (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
Publication Information
Korean Journal of Materials Research / v.32, no.3, 2022 , pp. 132-138 More about this Journal
Abstract
Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.
Keywords
zintl phase; $Mg_3Sb_2$; Sn doping; controlled melting; thermoelectric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, X. Zhang, Y. Wang, H. Liu and J. Zhang, Phys. Status Solidi A, 216, 1 (2019).
2 Z. Ren, J. Shuai, J. Mao, Q. Zhu, S. Song, Y. Ni and S. Chen, Acta Mater., 143, 265 (2018).   DOI
3 Y. Wang, X. Zhang, Y. Liu, Y. Wang, J. Zhang and M. Yue, Vacuum, 177, 109388 (2020).   DOI
4 W. Saito, K. Hayashi, J. Dong, J. F. Li and Y. Miyazaki, Sci. Rep., 10, 1 (2020).   DOI
5 M. Martinez-Ripoll, A. Haase and G. Brauer, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 30, 2006 (1974).   DOI
6 M. M. Rahman, A. K. M. A. Shawon and S.-C. Ur, Electron. Mater. Lett., 16, 540 (2020).   DOI
7 H. Fujishiro, M. Ikebe, M. Yagi, K. Nakasato, Y. Shibazaki and T. Fukase, J. Low Temp. Phys., 105, 981 (1996).   DOI
8 J. Zhang, L. Song, K. A. Borup, M. R. V. Jorgensen and B. B. Iversen, Adv. Energy Mater., 8, 1 (2018).
9 A. Bhardwaj, N. S. Chauhan and D. K. Misra, J. Mater. Chem. A., 3, 10777 (2015).   DOI
10 H. Wang, J. Chen, T. Lu, K. Zhu, S. Li, J. Liu and H. Zhao, Chinese Phys. B., 27, 1 (2018).
11 L. E. Bell, Science, 321, 1457 (2008).   DOI
12 R. Franz and G. Wiedemann, Ann. Phys., 165, 497 (1853).   DOI
13 A. Putatunda and D. J. Singh, Mater. Today Phys., 8, 49 (2019).   DOI
14 Q. G. Cao, H. Zhang, M. B. Tang, H. H. Chen, X. X. Yang, Y. Grin and J. T. Zhao, J. Appl. Phys., 107, 10 (2010).
15 J. Zhang, L. Song and B. B. Iversen, Angew. Chemie., 132, 4308 (2020).   DOI
16 A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra and R. C. Budhani, RSC Adv., 3, 8504 (2013).   DOI
17 A. Bhardwaj and D. K. Misra, RSC Adv., 4, 34552 (2014).   DOI
18 A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016).   DOI
19 F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui and Q. Zhang, Adv. Funct. Mater., 30, 1 (2020).
20 L. Song, J. Zhang and B. B. Iversen, J. Mater. Chem. A, 5, 4932 (2017).   DOI
21 M. T. Agne, K. Imasato, S. Anand, K. Lee, S. K. Bux, A. Zevalkink, A. J. E. Rettie, D. Y. Chung, M. G. Kanatzidis and G. J. Snyder, Mater. Today Phys., 6, 83 (2018).   DOI
22 S.-C. Ur, I. H. Kim and P. Nash, Mater. Lett., 58, 2132 (2004).   DOI
23 P. Rauwel, O. M. Laovvik, E. Rauwel, E. S. Toberer, G. J. Snyder and J. Taftao, Phys. Status Solidi A, 208, 1652 (2011).   DOI
24 S. M. Kauzlarich, S. R. Brown and G. J. Snyder, J. Chem. Soc. Dalt. Trans., 21, 2099 (2007).
25 H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 28, 10182 (2016).   DOI