DOI QR코드

DOI QR Code

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation) ;
  • Kim, Il-Ho (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation) ;
  • Ur, Soon-Chul (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
  • Received : 2022.01.06
  • Accepted : 2022.03.10
  • Published : 2022.03.27

Abstract

Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Keywords

Acknowledgement

This research was supported by the Korea Basic Science Institute grant funded by the Ministry of Education (grant no. 2019R1A6C1010047).

References

  1. L. E. Bell, Science, 321, 1457 (2008). https://doi.org/10.1126/science.1158899
  2. R. Franz and G. Wiedemann, Ann. Phys., 165, 497 (1853). https://doi.org/10.1002/andp.18531650802
  3. A. Putatunda and D. J. Singh, Mater. Today Phys., 8, 49 (2019). https://doi.org/10.1016/j.mtphys.2019.01.001
  4. Q. G. Cao, H. Zhang, M. B. Tang, H. H. Chen, X. X. Yang, Y. Grin and J. T. Zhao, J. Appl. Phys., 107, 10 (2010).
  5. S. M. Kauzlarich, S. R. Brown and G. J. Snyder, J. Chem. Soc. Dalt. Trans., 21, 2099 (2007).
  6. A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra and R. C. Budhani, RSC Adv., 3, 8504 (2013). https://doi.org/10.1039/c3ra40457a
  7. A. Bhardwaj and D. K. Misra, RSC Adv., 4, 34552 (2014). https://doi.org/10.1039/c4ra04889j
  8. A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016). https://doi.org/10.1039/c5cp07482g
  9. H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 28, 10182 (2016). https://doi.org/10.1002/adma.201603955
  10. J. Zhang, L. Song and B. B. Iversen, Angew. Chemie., 132, 4308 (2020). https://doi.org/10.1002/ange.201912909
  11. Y. Wang, X. Zhang, Y. Wang, H. Liu and J. Zhang, Phys. Status Solidi A, 216, 1 (2019).
  12. F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui and Q. Zhang, Adv. Funct. Mater., 30, 1 (2020).
  13. J. Zhang, L. Song, K. A. Borup, M. R. V. Jorgensen and B. B. Iversen, Adv. Energy Mater., 8, 1 (2018).
  14. L. Song, J. Zhang and B. B. Iversen, J. Mater. Chem. A, 5, 4932 (2017). https://doi.org/10.1039/C6TA08316A
  15. Z. Ren, J. Shuai, J. Mao, Q. Zhu, S. Song, Y. Ni and S. Chen, Acta Mater., 143, 265 (2018). https://doi.org/10.1016/j.actamat.2017.10.015
  16. H. Wang, J. Chen, T. Lu, K. Zhu, S. Li, J. Liu and H. Zhao, Chinese Phys. B., 27, 1 (2018).
  17. A. Bhardwaj, N. S. Chauhan and D. K. Misra, J. Mater. Chem. A., 3, 10777 (2015). https://doi.org/10.1039/C5TA02155C
  18. Y. Wang, X. Zhang, Y. Liu, Y. Wang, J. Zhang and M. Yue, Vacuum, 177, 109388 (2020). https://doi.org/10.1016/j.vacuum.2020.109388
  19. M. T. Agne, K. Imasato, S. Anand, K. Lee, S. K. Bux, A. Zevalkink, A. J. E. Rettie, D. Y. Chung, M. G. Kanatzidis and G. J. Snyder, Mater. Today Phys., 6, 83 (2018). https://doi.org/10.1016/j.mtphys.2018.10.001
  20. W. Saito, K. Hayashi, J. Dong, J. F. Li and Y. Miyazaki, Sci. Rep., 10, 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
  21. S.-C. Ur, I. H. Kim and P. Nash, Mater. Lett., 58, 2132 (2004). https://doi.org/10.1016/j.matlet.2003.12.034
  22. M. Martinez-Ripoll, A. Haase and G. Brauer, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 30, 2006 (1974). https://doi.org/10.1107/S0567740874006285
  23. M. M. Rahman, A. K. M. A. Shawon and S.-C. Ur, Electron. Mater. Lett., 16, 540 (2020). https://doi.org/10.1007/s13391-020-00241-0
  24. P. Rauwel, O. M. Laovvik, E. Rauwel, E. S. Toberer, G. J. Snyder and J. Taftao, Phys. Status Solidi A, 208, 1652 (2011). https://doi.org/10.1002/pssa.201026613
  25. H. Fujishiro, M. Ikebe, M. Yagi, K. Nakasato, Y. Shibazaki and T. Fukase, J. Low Temp. Phys., 105, 981 (1996). https://doi.org/10.1007/BF00768510