• 제목/요약/키워드: Re-engineering

검색결과 3,544건 처리시간 0.031초

5톤급 웜기어 감속기의 워엄기어와 케이싱의 최적설계 및 해석에 관한 연구 (Study on Optimal Design and Analysis of Worm Gear and Casing of 5 Ton Class Worm Gear Reducer)

  • 조성현;전창민;진진;김동선;류성기
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.15-21
    • /
    • 2019
  • The worm reducer is capable of quadrature power transmission when the shafts are disposed at right angles to each other. Since a large reduction ratio can be obtained of up to approximately 1/100 and a sliding movement is performed during operation compared with other gears, the noise and vibration are small, and there is the advantage that reverse rotation can be prevented. On the other hand, severe wear and damage are displayed on the gear and worm tooth surface, and many defects, such as intense heat generation of the reducer, occur. In the reducer case, the four-piece casing method was selected to solve the problems of heat generation, transmission efficiency, and assemblability. In this paper, we analyzed the problems of the worm and worm wheel (the core parts of a 5-Ton worm reducer) and casing through these methods and researched how to solve them.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • 반도체디스플레이기술학회지
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

미세조직적 인자가 밀소둔된 Ti-6Al-4V 합금의 피로 및 피로균열전파 거동에 미치는 영향 (Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy)

  • 박상후;김수민;이다은;안수진;김상식
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.845-853
    • /
    • 2018
  • To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.

Research on the factors affecting the development of shrinkage cracks of rammed earth buildings

  • Zhao, Xiang;Cai, Hengli;Zhou, Tiegang;Liu, Ling;Ding, Yijie
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.365-375
    • /
    • 2021
  • Rammed earth (RE) buildings have existed all over the world for thousands of years, and have gained increasing attention because of its sustainable advantages, however, the shrinkage cracks reduce its bearing capacity and seriously affect its durability and applicability. In this study, the shrinkage cracks test was carried out to investigate the effects of initial water content, proportion of sand and gravel, compaction degree, thickness and the additives (polypropylene fiber, cement and sodium silicate) of shrinkage cracks in RE buildings, ten groups of RE samples were prepared and dried outdoors to crack. Four quantitative parameters of geometrical structure of crack patterns were used to evaluate the development of cracks. The results show that the specimens cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. The formation of crack can be accelerated with the increase of initial water content and thickness of specimen, while restricted with the increase of the compaction degree and the proportion of sand and gravel. Moreover, the addition of 1% polypropylene fiber, 10% cement and 0.5 volume ratio sodium silicate can significantly restrain the form and development of cracks. In RE construction, these factors should be considered comprehensively to prevent the harm caused by shrinkage cracks. Further works should be carried out to obtain the optimum dosage of the additives, which can benefit the construction of RE buildings in future.

셀프리 다중안테나 네트워크에서 하위 성능 사용자를 위한 전력 재할당 기법 (Power Re-Allocation for Low-Performance User in Cell-free MIMO Network)

  • 류종열;반태원;이웅섭
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1367-1373
    • /
    • 2022
  • 본 논문에서는 셀프리 다중안테나 네트워크에서 하위 성능 사용자의 주파수 효율을 증대시키기 위한 전력 재할당 기법을 고려한다. AP(Access Point)는 사용자의 대규모 페이딩(large-scale fading) 채널 정보를 이용해 채널 세기에 비례하여 전력을 할당하여 전체 네트워크의 전력효율을 극대화한다. 다음으로 AP는 하위 성능 사용자의 주파수 효율을 증가시키기 위해 할당전력 중 임계비율 이상의 전력을 할당받은 사용자의 전력을 임계비율과 같아지도록 줄이고, 회수한 전력을 채널이 가장 나쁜 사용자에게 추가로 할당한다. 시뮬레이션을 통해 전력 재할당 기법을 통해 증가시킬 수 있는 하위 성능 사용자의 주파수 효율을 정량적으로 검증한다.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue;Rhee Sung-Keun;Bae Jin-Woo;Baek Jong-Hwan;Park Yong-Ha;Lee Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.232-239
    • /
    • 2006
  • The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

나트륨-물 반응에 의한 5Cr-1Mo Steel 시편의 부식특성 (Corrosion Characteristics of a 5Cr-1Mo Steel Specimen by Sodium-Water Reaction)

  • 정경채;정지영;박진호;황성태;김의식
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1023-1029
    • /
    • 1998
  • 5Cr-1Mo steel을 이용하여 나트륨 분위기에서 미량 물 누출 실험을 수행하였다. 시편에서 미량 물 누출로 인한 누출경로의 완전 re-open time은 129분으로 나타났고, 그 크기는 직경 2mm를 나타냈다. 누출경로는 re-open되기 전에 누출부위를 중심으로 halos현상을 형성하였으며, halos의 크기와 실제 re-open크기와는 다르게 나타났다. 나트륨-물 반응으로 인한 재질의 부식은 나트륨부위로부터 시작되었으며, steam 부위에서는 부식이 발생하지 않았다. 시편 누출부위를 AES로 분석한 결과 Cr의 segregation이 가장 많이 나타났으며, SEM과 EPMA 관찰로부터 나트륨화합물들이 누출부위 주변에 대량 침적되어 있는 것이 관찰되어 나트륨 철 크롬혼합물 형태로 부식생성물들이 혼재되어 있는 것으로 예측되었다.

  • PDF