• Title/Summary/Keyword: Rayleigh model

Search Result 389, Processing Time 0.023 seconds

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

New Evaluation on the Selective Diversity Systems for the Detection of M-ary PSK & DPSK Signals over Rayleigh Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.183-189
    • /
    • 2007
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effect of fading since the probability that all the signals components will fade simultaneously is reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK(M-ary DPSK) and MPSK(M-ary PSK), are mathematically derived for the Selection Combining 2(SC-2) and Selection Combining 3(SC-3) demodulation system which requires a less complex receiver than maximum ratio combining(MRC). The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the additive white gaussian noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

Analysis on SC-2 Diversity Systems for the Reception of M-ary Signals over Rayleigh Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.201-206
    • /
    • 2007
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effects of fading since the probability that all the signals components will fade simultaneously are reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK, MPSK and MQAM, are mathematically derived for the SC-2(Selection Combining 2) demodulation system, whereby the two signals with the two largest amplitudes are coherently combined among the L branches. On the other hand, maximum ratio combining(MRC) requires the individual signals from each path to be time-aligned, cophased, optimally weighted by their own fading amplitude, and then summed. The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the Additive White Gaussian Noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

Modal Analysis of Large Scale Multi-Machine Power System using Rayleigh Quotient and Deflation (Rayleigh Quotient와 Deflation을 이용한 대형다기(多機)전력계통의 고유치 해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.76-78
    • /
    • 1993
  • This paper describes an efficient method of computing any desired number of the most unstable eigenvalues and eigenvectors of a large scale multi-machine power system. Approximate eigenvalues obtained by Hessenberg process are refined using Rayleigh quotient iteration with cubic convergence property. If further eigenvalues and eigenvectors are needed, the procedure described above are repeated with deflation. The proposed algorithm can cover all the model types of synchronous machines, exciters, speed governing system and PSS defined in AESOPS. The proposed algorithm applied to New England test system with 10 machines and 39 buses produced the results same with AESOPS in faster computation time. Also eigenvectors computed in Rayleigh quotient iteration makes it possible to make eigen-analysis for improving unstable modes.

  • PDF

A Performance Analysis of FEC Coding Method in Rayleigh Satellite Return Link Channel (레일리 위성 리턴링크 채널에서 FEC 부호 방식 성능분석)

  • Lee Seong Ro;Cho Sung Eui;Oh Deock gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1633-1641
    • /
    • 2004
  • In satellite digital broadcasting and satellite internet, severe burst errors occur in the high-speed return channel from the satellite to mobiles. In this paper, we analyze the performance of the forward error correction (FEC) coding method in the Rayleigh fading return channel. We first investigate the channel model of Loo, LutB, Vucetic and Corazza. We then compare the performance of the convolutional, Reed-Solomon (RS), convolution-RS concatenation, and Turbo codes in rayleigh fading channel.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Finite Element Analysis of Laser-Generated Ultrasound for Characterizing Surface-Breaking Cracks

  • Jeong Hyun Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1116-1122
    • /
    • 2005
  • A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain finite element (FE) model. The shear dipole- FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks.

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

Length-biased Rayleigh distribution: reliability analysis, estimation of the parameter, and applications

  • Kayid, M.;Alshingiti, Arwa M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.

  • PDF

Active Window system based on Finite Thickness Window Model (유한 두께 창문 모델을 적용한 능동 소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.763-768
    • /
    • 2012
  • Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.

  • PDF