• Title/Summary/Keyword: Rayleigh Ritz method

Search Result 194, Processing Time 0.023 seconds

Dynamic Modeling of a Rectangular Plate with Piezoelectric actuators and Sensors (압전세라믹이 부착된 정방형 판의 동적 모델링)

  • Kim, Seung R.;Moon K. Kwak;Seok Heo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.309.1-309
    • /
    • 2002
  • This paper is concerned with the dynamic modeling of a rectangular plate with piezoelectric actuators and sensors. The experimental frequency response plots can be used to verify the theoretical modeling. The active vibration control was achived by using positive position feedback controller. Theoretical analysis will follow.

  • PDF

A Study on the Coupled Vibration of Train wheel and Rail Dynamic Chaacteristics of Train Wheel with the Stepped Thickness (차륜과 철로의 연성진동에 관한 연구)

  • 김광식;박문태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.142-144
    • /
    • 1986
  • The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma./sub c/, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method.

  • PDF

Geometrically Nonlinear Analysis of Cantilevered Cylindrical Shells under Lateral Load (탑상형 원통쉘의 휨내력에 관한 기하학적 비선형 해석)

  • 최현식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.55-62
    • /
    • 1993
  • Elastic failures of cantilevered cylindrical shells subject to lateral load are caused mainly by geometrical nonlinearlity. Geometerally nonlinear analysis is call for so as to investigate failure mechanisms. In this paper the geometericlly nonlinear analysis of cantilevered cylindrical shells under transverse load by the Rayleigh-Ritz Method is presented to examine the collapse loads and the process of cross-sectional deformations. The critical stress for relatively long cylinders have a tendency to show low level in comparison with the classical buckling stress for compression.

  • PDF

Natural Frequency of L-type Folded Plate (L-형 절곡판의 고유진동수 해석)

  • Lee, Kil-Woo;Chung, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.100-108
    • /
    • 1989
  • The frequency equation and numerical process of natural frequencies for several boundary conditions of L-type folded plate given to the different thickness and lenth are derived by using Rayleigh-Ritz method in this study. Those natural frequencies are attaind by choosing the proper eigenfunction for boundary conditions of x-direction and y-direfction beams, by considering the convergence of numerical results.

  • PDF

Free vibration analysis of clamped free circular cylindrical shells (일단고정-일단자유 원통 셸의 진동 해석)

  • 임정식
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.45-56
    • /
    • 1996
  • Frequency equation for clamped-free circular cylindrical thin shell is derived by the application of Rayleigh-Ritz method using the Sanders shell equation. The cubic frequency equation is solved for each axial and circumferential mode number. Integration of the beam characteristic funcitions was performed via Mathematica which results in more accurate integration of the beam functions that affect the accuracy of the frequency. The natural frequencies from this calculation are compared with existing results. It shows that this calculation predicts natural frequencies closer to the test results than existing results.

  • PDF

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Vibration Characteristics of the Tower Structures of Wind Turbine Generators (풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.49-59
    • /
    • 2009
  • Vibrations of the tower structures of 750kW and 6kW wind turbines(WT) are investigated by measurement and analysis. Acceleration responses of the WT towers under various operation condition are monitored in real time by the remote monitoring system using LabVIEW. Using the monitoring system, resonance condition of the tower structures is diagnosed with the wind speed data within the operating speed range. To predict the tower resonance frequency, 750 kW tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. For 6 kW WT, Rayleigh-Ritz analysis is carried out on the tower-cable coupled system. Calculated tower bending frequency is in good agreement with the measured value. Using the analysis model, parametric study is available in order to prevent the severe resonance.

  • PDF

Bryan's Factor of a Hemispherical Resonator due to Coriolis Effect (코리올리 효과에 의한 반구형 진동 구조물의 세차계수)

  • Rhee, Huinam;Park, Sangjin;Sarapuloff, Sergii A.;Han, Sunu;Park, Jinho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.457-460
    • /
    • 2014
  • Precession coefficient is defined by the ratio of the angular rate or rotational angle of the standing wave formed in an elastic resonator with respect to that of the platform. In this paper the precession of a hemispherical resonator due to Coriolis' effect is studied through Rayleigh-Ritz's method and Lagrangian Mechanics when the resonator undergoes Rayleigh's mode deformation. The calculation result was compared with studies by other researchers.

  • PDF

Free Vibration Analysis of Orthotropic Triangular Plates with Simplified Series Function (단순급수함수를 이용한 직교이방성 복합재료 삼각판의 자유진동해석)

  • 이영신;정대근;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.849-863
    • /
    • 1992
  • A very simple and computationally efficient numerical method is developed for the free vibration of isotropic and orthotropic composite triangular plates. A set of two-dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies, nodal patterns and mode shapes for the plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series functions are constructed with adding order of polynominal. Natural frequencies, nodal patterns and mode shapes are obtained for right triangular plates with three different support conditions. The obtained numerical results are presented, and the isotropic and some orthotropic cases are verified with other numerical methods in the liternature.